
Vumi Javascript Sandbox Toolkit
Documentation

Release 0.2.18

Praekelt Foundation

December 02, 2016

Contents

1 Interaction Machine 3

2 App 11

3 States 15

4 Logging 27

5 User 29

6 Config 33

7 Contacts 35

8 HTTP API 41

9 Metrics 45

10 Events 47

11 AppTester 49

12 DummyApi 63

13 Translation 71

14 Sending Messages 73

15 Utils 75

16 Test Utilities 79

17 Javascript Sandbox Tutorial 81

18 Example Applications 91

19 Indices and tables 93

i

ii

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

This is the sandbox toolkit for making writing Javascript applications for Vumi Go’s Javascript sandbox.

Contents 1

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

2 Contents

CHAPTER 1

Interaction Machine

class ApiError(message)
Thrown when an error occurs when the sandbox api returns a failure response (when success is false).

Arguments

• reply (object) – the failure reply given by the api.

class IMErrorEvent(im)
Emitted when an error occurs during a run of the im.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

• error (InteractionMachine) – the error that occured.

The event type is im:error.

class IMEvent()
An event relating to an interaction machine.

Arguments

• name (string) – the event type’s name.

• im (InteractionMachine) – the interaction machine associated to the event

class IMShutdownEvent(im)
Occurs when the im is about to shutdown.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

The event type is im:shutdown.

class InboundEventEvent(im, cmd)
Emitted when an message status event is received. Typically, this is either an acknowledgement or a delivery
report for an outbound message that was sent from the sandbox application.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

• cmd (object) – the API request cmd containing the inbound user message.

The event type is inbound_event.

class InboundMessageEvent(im, cmd)
Emitted when an inbound user message is received by the interaction machine.

3

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

Arguments

• im (InteractionMachine) – the interaction machine firing the event.

• cmd (object) – the API request cmd containing the inbound user message.

class InteractionMachine(api, app)

Arguments

• api (SandboxAPI) – a sandbox API providing access to external resources and inbound
messages.

• app (App) – a collection of states defining an application.

A controller that handles inbound messages and fires events and handles state transitions in response to those
messages. In addition, it serves as a bridge between a App() (i.e. set of states defining an application) and
resources provided by the sandbox API.

static api
A reference to the sandbox API.

static api_request(cmd_name, cmd)
Raw request to the sandbox API.

Arguments

• cmd_name (string) – name of the API request to make.

• cmd (object) – API request data.

Returns a promise fulfilled with the response to the API request, or rejected with a ApiError() if a
failure response was given.

static app
A reference to the App().

static attach()
Attaches the im to the given api and app. The sandbox API’s event handlers are set to emit the respective
events on the interaction machine, then terminate the sandbox once their listeners are done.

static config
A IMConfig() instance for the IM’s config data. Available when setup is complete (see
InteractionMachine.setup()).

static contacts
A default ContactStore() instance for managing contacts. Available when setup is complete (see
InteractionMachine.setup())

static create_and_set_state(state)
Creates new state using the given StateData() or state name, then sets it as the
InteractionMachine()‘s current state.

Arguments

• state (object, string, or StateData) – The state to create and set

static create_state(state)
Creates a new state using the given StateData() or state name.

Arguments

• state (object, string, or StateData) – The state to create

static done()
Saves the user, then terminates the sandbox instance.

4 Chapter 1. Interaction Machine

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static enter_state(state)
Creates the given state, sets it as the current state, then emits a :class:StateEnterEvent‘ (on
:class:InteractionMachine, then the new state).

Arguments

• state (object, string, or StateData) – the state to enter

static exit_state()
Emits a :class:StateExitEvent‘ (on :class:InteractionMachine, then the state), then resets the interaction
machine’s state to null. If the interaction machine is not on a state, this method is a no-op.

static fetch_translation(lang)
Retrieve a Translator() instance corresponding to the translations for the given language. Returns a
promise that will be fulfilled with the retrieved translator.

Arguments

• lang (string) – two letter language code (e.g. sw, en).

Translations are retrieved from the sandbox configuration resource by looking up keys named
translation.<language-code>.

static groups
A default GroupStore() instance for managing groups. Available when setup is complete (see
InteractionMachine.setup())

static handle_message(msg)
Delegates to its subordinate message handlers to handle an inbound message based
on the message’s session event type. The fallback message handler is defined by
InteractionMachine.handle_message.fallback(), which by default is an alias for
InteractionMachine.handle_message.resume().

If the user is not currently in a session (which happens for new users and users that have reached an
EndState() in a previous session), and the message does not have a session_event (as is the case
for session-less messages such as smses or tweets), we assume the user is starting a new session.

Arguments

• msg (object) – the received inbound message. *

static log
A Logger() instance for logging message in the sandbox.

static metrics
A default MetricStore() instance for emitting metrics. Available when setup is complete (see
InteractionMachine.setup())

static msg
The message command currently being processed. Available when setup is complete (see
InteractionMachine.setup()).

static next_state
The next state that the user should move to once the user’s input has been processed.

static on "inbound_message"(event)
Invoked an inbound user message, triggering state transitions and events as necessary.

Arguments

• event (InboundMessageEvent) – the fired event.

The steps performed by this method are roughly:

5

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• Set up the IM (see InteractionMachine.setup())

• If the user is currently in a state (from a previous IM run), switch to this state.

• Otherwise, this is a new user, so switch to the IM’s configured start state

• Handle the message based on its session event type (see
InteractionMachine.handle_message()).

static on "unknown_command"(event)
Invoked by a UnknownCommandEvent() event when a command without a handler is received (see
UnknownCommandEvent()). Logs an error.

Arguments

• event (UnknownCommandEvent) – the fired event.

static outbound
A OutboundHelper() for sending out messages. Available when setup is complete (see
InteractionMachine.setup())

static reply(msg)
Send a response from the current state to the user.

Returns a promise which is fulfilled once the response has been sent.

static resume(state)
Creates the given state, sets it as the current state, then emits a :class:StateResumeEvent‘ (on
:class:InteractionMachine, then the new state).

If the created state has a different name to the requested state, a StateEnterEvent() is emitted in-
stead. This happens, for example, if the requested state does not exist (see AppStates.create()).

Arguments

• state (object, string, or StateData) – the state to resume

static sandbox_config
A SandboxConfig() instance for accessing the sandbox’s config data. Available when setup is com-
plete (see InteractionMachine.setup()).

static set_state(state)
Sets the given State() as the InteractionMachine()‘s current state.

Arguments

• state (State) – The state set as the current state

static setup(msg[, opts])
Sets up the interaction machine using the given message.

Arguments

• msg (object) – the received message to be used to set up the interaction machine.

• opts.reset (boolean) – whether to reset the user’s data, or load them from the kv
store

The IM sets up its attributes in the following order:

• sanbox config

• im config

• metric store

6 Chapter 1. Interaction Machine

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• user

• app

Finally, the user’s creation_event is emitted, then a SetupEvent() is emitted for the interaction
machine. A promise is returned, which will be fulfilled once all event listeners are done.

static state
The current State() object. Updated whenever a new state is entered via a call to
InteractionMachine.switch_state(),

static switch_state(dest)
Switches the IM from its current state to the given destination state. Returns a promise fulfilled once the
switch has completed.

Arguments

• dest (object, string, or StateData) – the destination state’s name or state
data

The following steps are taken:

• The current state is exited (see InteractionMachine.exit_state())

• The destination state is enter (see InteractionMachine.enter_state())

static user
A User() instance for the current user. Available when setup is complete (see
InteractionMachine.setup()).

InteractionMachine.handle_message.close(msg)
Invoked when an inbound message is received with a close session event type. Emits a
SessionCloseEvent() on the interaction machine and waits for its listeners to complete their work.

Arguments

• msg (object) – the received inbound message.

InteractionMachine.handle_message.new(msg)
Invoked when an inbound message is received with a new session event type.

Arguments

• msg (object) – the received inbound message.

Does roughly the following:

•Emits a SessionNewEvent() on the interaction machine and waits for its listeners to complete their
work

•Sends a reply from the current state.

InteractionMachine.handle_message.resume(msg)
Invoked when an inbound message is received with a resume session event type.

Arguments

• msg (object) – the received inbound message.

Does roughly the following:

•Emits a SessionResumeEvent() on the interaction machine and waits for its listeners to complete
their work

7

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

•If the message contains usable content, give the content to the state (which fires a
StateInputEvent()).

•Send a reply from the current state.

class ReplyEvent(im)
Emitted after the interaction machine sends a reply to a message sent in by the user.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

• content (string) – the content of the reply

• continue_session (bool) – true if the reply did not end the session, false if the
reply ended the session.

The event type is reply.

class SessionCloseEvent(im, user_terminated)
Emitted when a user session ends.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

• user_terminated (boolean) – true if the session was terminated by the user (includ-
ing when the user session times out) and false if the session was closed explicitly by the
sandbox application.

The event type is session:close.

class SessionNewEvent(im)
Emitted when a new user session starts.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

The event type is session:new.

class SessionResumeEvent(im)
Emitted when a new user message arrives for an existing user session.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

The event type is session:resume.

class UnknownCommandEvent(im, cmd)
Emitted when a command without a handler is received.

Arguments

• im (InteractionMachine) – the interaction machine emitting the event.

• cmd (object) – the API request that no command handler was found for.

The event type is unknown_command.

interact(api, f)
If api is defined, create an InteractionMachine()with the App() returned by f. Otherwise do nothing.

If f is an App() subclass, new f() is used to construct the application instance instead.

Arguments

8 Chapter 1. Interaction Machine

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• api (SandboxAPI) – a sandbox API providing access to external resources and inbound
messages

• f (function) – a function that returns an App() instance or an App() class.

Returns the InteractionMachine() created or null if no InteractionMachine() was created.

Usually the return value is ignored since creating an InteractionMachine() attachs it to the api.

9

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

10 Chapter 1. Interaction Machine

CHAPTER 2

App

class App(start_state_name[, opts])
The main component defining a sandbox application. To be subclassed and given application specific states and
logic.

Arguments

• start_state_name (string) – name of the initial state. New users will enter this
state when they first interact with the sandbox application.

• opts.AppStates (AppStates) – Optional subclass of AppStates() to be used for
creating and managing states.

• opts.events (object) – Optional event name-listener mappings to bind. For example:

{
'app:error': function(e) {

console.log(e);
},
'im.user user:new': function(e) {

console.log(e);
}

}

static $
A LazyTranslator() instance that can be used throughout the app to for internationalization using
gettext. For example, this would send ‘Hello, goodbye!’ in the user’s language:

self.states.add('states:start', function(name) {
return new EndState(name, {text: self.$('Hello, goodbye!')});

});

static exit()
Invoked when the interaction machine has emitted an IMShutdownEvent(), which occurs after the
interaction machine has finished processing the inbound message and has sent out a reply (if relevant).
Intended to be overriden and used as a ‘teardown’ hook. May return a promise.

static init()
Invoked just after setup has completed, and just before ‘setup’ event is fired to provide subclasses with a
setup hook. May return a promise.

static remove(name)
Removes an added state or state creator.

Arguments

11

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• name (string) – name of the state or state creator

class AppError(app, message)
Thrown when an app-related error occurs.

Arguments

• app (App) – the app related to the error.

• message (string) – the error message.

class AppErrorEvent(app, error)
Emitted when an error is handled by the app, in case other entities want to know about the handled error.

Arguments

• app (App) – the app emitting the event.

• error (InteractionMachine) – the error that occured.

The event type is app:error.

class AppEvent(name, app)
An event relating to an app.

Arguments

• name (string) – the name of the event

• app (App) – the app emitting the event.

class AppStateError(app, message)
Thrown when an error occurs creating or accessing a state in an app.

Arguments

• app (App) – the app related to the error.

• message (string) – the error message.

class AppStates(app)
A set of states for a sandbox application. States may be either statically created via add.state, dynamically
loaded via add.creator (or via add for either), or completely dynamically defined by overriding create.

Arguments

• app (App) – the application associated with this set of states.

static add(state)
Adds an already created state by delegating to AppStates.add.state().

Arguments

• state (State) – the state to add

static add(name, creator)
Adds a state creator by delegating to AppStates.add.creator().

Arguments

• state (State) – the state to add

static create(name, opts)
Creates the given state represented by the given state name by delegating to the associated state creator.

Arguments

• name (string) – the name of the state to create.

12 Chapter 2. App

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• opts (object) – Options for the state creator to use. Optional.

If no creator is found for the requested state name, we create a start state instead.

This function returns a promise.

It may be overridden by AppStates() subclasses that wish to provide a completely dynamic set of
states.

static init()
Invoked just after setup has completed, and just before ‘setup’ event is fired to provide subclasses with a
setup hook. May return a promise.

AppStates.add.creator(name, creator)

Adds a state creator. Invoked by AppStates.create(), or throws an error if a creator is already
registered under the given state name.

Arguments

• state_name (string) – name of the state

• creator (function) –

A function func(state_name) for creating the state. This function should take the
state name should return a state object either directly or via a promise.

State creators can also delegate to other state creators by using AppStates.create().
For example, an app can do something like this:

self.states.add('states:start', function() {
return self.user.metadata.registered

? self.states.create('states:main_menu')
: self.states.create('states:register');

});

AppStates.add.state(state)
Adds an already created state.

Arguments

• state (State) – the state to add

AppStates.creators.__error__(name)
Creates the fallback error state.

Arguments

• name (string) – the name of the state for which an error occurred.

This default implementation creates an EndState with name name and content “An error occurred. Please try
again later”.

The end state created has the next state set to the start state. If the start state does not exist, we in the error state
again..

AppStates.creators.__start__(name)

Arguments

• name (string) – the name of the start state.

• im (InteractionMachine) – the interaction machine the start state is for.

13

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

The default implemenation looks up a creator for the state named name and calls that. If no such creator exists,
it uses App.creators.__error__() instead.

14 Chapter 2. App

CHAPTER 3

States

States are the building blocks of sandbox applications.

3.1 Overview of States

The currently available states are:

• FreeText

• ChoiceState

• MenuState

• LanguageChoice

• PaginatedChoiceState

• BookletState

• PaginatedState

• EndState

3.1.1 FreeText

A free text state displays a message and allows a person to respond with any text. It may optionally include a function
to validate text input and present an error message. It is the swiss army knife of simple question and answer states.

See FreeText().

3.1.2 ChoiceState

A state which displays a list of numbered choices and allows a person to respond by selecting one of the choices. Each
choice has a value (what is stored as the person’s answer) and a label (the text that is displayed). Choice states may
optionally accept choice labels as input (in addition to the number of the choice in the list).

See ChoiceState().

15

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

3.1.3 MenuState

An extension of ChoiceState for selecting one of a list of states to go to next.

See MenuState().

3.1.4 LanguageChoice

An extension of ChoiceState that allows a person to select from a list of languages. The language choice is stored and
translations applied to future interactions (if translations are provided).

See LanguageChoice().

3.1.5 PaginatedChoiceState

An extension of ChoiceState for displaying long lists of choices by spanning choices across multiple pages. Allows
both automatically dividing up the choices displayed on each page and fixing the number of choices displayed on each
page, optionally shortening the length of labels to ensure that a specified character limit is not exceeded. Extremely
useful for display dynamic sets of options over USSD or SMS.

See PaginatedChoiceState().

3.1.6 BookletState

A state for displaying paginated text, where the text displayed on each page is programatically determined. Useful
when presenting medium length pieces of text or pages of related information that need to be split across multiple
USSD messages.

See BookletState().

3.1.7 PaginatedState

Similar to BookletState, PaginatedState displays paginated text. The difference between the two is that PaginatedState
requires the text to be displayed to the user to be given up front. The text is then automatically divided up into pages.

See PaginatedState().

3.1.8 EndState

This displays text and then terminates a session. Vital for ending USSD sessions but also useful to mark the end of a
set of interactions with an application.

See EndState().

3.1.9 Writing your own states

You can also write your own states!

Start by extending one of the existing states, or the base State() class as needed.

16 Chapter 3. States

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

3.2 State reference

A reference guide to all the states available in the toolkit.

class State(name, opts)
Base class for states in the interaction machine. States can be thought of as a single screen in a set of interactions
with the user.

Arguments

• name (string) – name used to identify and refer to the state

• opts.metadata (object) – data about the state relevant to the interaction machine’s
current user. Optional.

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Default is true. May also be a function, which may return its result via a promise.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Default is true. May also be a function, which may return its result via a promise.

• opts.helper_metadata (object) – additional helper metadata to set on the reply
sent to the user. Primarily useful for setting voice metadata for messages destined to be sent
as voice calls. Default is null. May also be a function, which may return its result via a
promise.

• opts.check (function) – a function func(input) for validating a user’s response,
where input is the user’s input. If a string or LazyText() is returned, the text will be
taken as the error response to send back to the user. If a StateInvalidError() is
returned, its response property will be taken as the error response to send back to the
user. Any other value returned will be taken as a non-error. The result may be returned via
a promise. See State.validate().

• opts.events (object) – Optional event name-listener mappings to bind. For example:

{
'state:invalid': function(e) {

console.log(e);
}

}

static display()
The content to be displayed to the user. May return a promise.

static init()
Invoked just after setup has completed, and just before ‘setup’ event is fired to provide subclasses with a
setup hook. May return a promise.

static input()
Accepts input, invokes State.translate.before_input(), then emits a
StateInputEvent‘() to allow input to be processed.

static invalidate(response)
Invalidates the user’s state, sending the given response to the user. Sets the state’s self.error object to
an appropriate error and emits a StateInvalidEvent().

Arguments

• response (string or LazyText()) – the response to send back to the user

3.2. State reference 17

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static invalidate(error)
Invalidates the user’s state using an error. Sets the state’s self.error object to an appropriate error and
emits a :class:StateInvalidEvent‘‘.

Arguments

• error (StateInvalidError) – the error to invalidate the user’s state with.

static save_response(response)
Called by sub-classes to store accepted user responses on the user object.

Arguments

• response (string) – value to store as an answer.

static setup(im)
Called before any other methods on the state are called to allow the state to set itself up.

Arguments

• im (InteractionMachine) – interaction machine using the state.

static show()
Translates the state using State.translators.before_display(), then displays its text.

static translate(i18n)
Translate’s a state’s text using the given translator. May return a promise.

Arguments

• i18n (Translator) – the translation function to be used for translating the text.

State.emit.input(im)
Shortcut for emitting an input event for the state (since this is done quite often). See StateInputEvent().

State.translators.before_display(i18n)
Translate’s a state’s text using the given translator. Invoked before text is displayed to the user. By default, just
delegates to State.translate(). May return a promise.

Arguments

• i18n (Translator) – the translation function to be used for translating the text.

State.translators.before_input(i18n)
Translate’s a state’s text using the given translator. Invoked before user input is processed. By default, just
delegates to State.translate(). May return a promise.

Arguments

• i18n (Translator) – the translation function to be used for translating the text.

State:set_next_state(name)
Set the state that the user will visit after this state using the given state name.

Arguments

• name (string) – The name of the next state

State:set_next_state(fn[, arg1[, arg2[, ...]]])
Use a function to set the state that the user will visit this state.

Arguments

• fn (function) – a function that returns name of the next state or an options object with
data about the next state. The value of this inside f will be the calling state instance. May
also return its result via a promise.

18 Chapter 3. States

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• arg1, arg2, ... (arguments) – arguments to pass to fn

class StateEnterEvent()
Emitted when the state is entered by a user.

This happens when the state is switched to from another state, or when the state is created if this is the start of a
new session).

Arguments

• state (State) – the state being entered.

The event type is state:enter.

class StateEnterEvent()
Emitted when the state is exited by the user. This happens immediately before the interaction machine switches
to a different state (see StateEnterEvent()).

Arguments

• state (State) – the state being exited.

The event type is state:exit.

class StateError(state, message)
Occurs when interacting or manipulating a state causes an error.

Arguments

• state (State) – the state that caused the error.

• message (string) – the error message.

class StateEvent(name, state, data)
An event relating to a state.

Arguments

• name (string) – the event type’s name.

• state (State) – the state associated to the event.

class StateEvent(name, state, error)
Emitted when a state becomes invalid.

Arguments

• state (State) – the state associated to the event.

• error (StateInvalidError) – the validation error that occured.

class StateInputEvent(content)
Emitted when the user has given input to the state.

Arguments

• state (State) – the state that the input was given to.

• content (string) – text from the user.

The event type is state:input.

class StateInvalidError(state, response[, opts])
Occurs when a state receives invalid input. Raised either by a failed validation check or by explicitly calling
State.invalidate().

Arguments

3.2. State reference 19

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• state (State) – the state that caused the error.

• response (string or LazyText) – the response to send back to the user.

• opts.reason (string) – the reason for the error.

• opts.input (string) – the user input that caused the error, if relevant

static translate(i18n)
Translate the error response.

Arguments

• i18n (Translator) – the translation function to be used for translating the text.

class StateResumeEvent()
Emitted when the state is resumed.

When the user enters input, the new sandbox run is started, causing the state to be re-created (or resumed) to
process the user’s input. This means that when this event is emitted, the state has already been entered (see
StateEnterEvent()) and its content has been shown to the user in a previous sandbox run (provided the
session didn’t timeout when the send was attempted).

Arguments

• state (State) – the state being resumed.

The event type is state:resume.

class StateShowEvent()
Emitted when a state’s is shown to a user, immediately after State.display() has completed.

Arguments

• state (State) – the state being shown.

• content (string) – the content being shown.

The event type is state:show.

class Choice(value, label)
An individual choice that the user can select inside a ChoiceState().

Arguments

• value (string) – string used when storing, processing and looking up the choice.

• label (string) – string displayed to the user.

class ChoiceState(name, opts)
A state which displays a list of numbered choices, then allows the user to respond by selecting one of the choices.

Arguments

• name (string) – name used to identify and refer to the state

• opts.question (string or LazyText) – text to display to the user

• opts.choices (Array of Choice() objects) – ordered list of choices to display

• opts.error (string or LazyText) – error text to display to the user if bad user
input was given. Optional.

• opts.accept_labels (boolean) – whether choice labels are accepted as the user’s
responses. For eg, if accept_labels is true, the state will accepts both “1” and “Red”
as responses responses if the state’s first choice is “Red”. Defaults to false.

20 Chapter 3. States

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Defaults to true.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Defaults to true.

• opts.next (fn_or_str_or_obj) – state that the user should visit after this state.
May either be the name of the next state, an options object representing the next state, or
a function of the form f(choice) returning either, where choice is the Choice()
chosen by the user. If next is null or not defined, the state machine will be left in the
current state. See State.set_next_state().

• opts.events (object) – Optional event name-listener mappings to bind.

static process_choice(choice)
Return true if the choice has been handled completely or false if the choice should be propagated to
the next state handler.

This allows sub-classes to provide custom processing for special choices (e.g. forward and back options
for navigating through long choice lists).

Arguments

• choice (Choice) – choice to be processed.

static shorten_choices(text, choices)
Hook for replacing choices with shorter ones if needed.

class LanguageChoice(opts)
A state for selecting a language.

Arguments

• name (string) – name used to identify and refer to the state

• opts.next (fn_or_str) – state that the user should visit after this state. Functions
should have the form f(choice) and return the name of the next state or a promise that
returns the name. The value of this inside f will be the calling ChoiceState() in-
stance.

• opts.question (string or LazyText) – text to display to the user

• opts.error (string or LazyText) – error text to display to the user if we reach
this state in error. Optional.

• opts.accept_labels (boolean) – whether choice labels are accepted as the user’s
responses. For eg, if accept_labels is true, the state will accepts both “1” and “Red”
as responses responses if the state’s first choice is “Red”. Defaults to false.

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Defaults to true.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Defaults to true.

• opts.events (object) – Optional event name-listener mappings to bind.

It functions exactly like ChoiceState() except that it also stores the value of the selected choices as the
user’s language (it is still available as an answer too).

Choice() instances passed to this state should have two-letter language codes as values, e.g.:

3.2. State reference 21

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

new LanguageChoice(
"select_language",
{

next: "next_state",
question: "What language would you like to use?",
choices: [new Choice("sw", "Swahili"), new Choice("en", "English")]

}
);

class MenuState(name, opts)
A ChoiceState() whose Choice() values are either state names or state options objects. See
State.set_next_state() for a description of the options objects.

Supports the same parameters as ChoiceState() except that opts.next isn’t available.

class PaginatedChoiceState(name, opts)
A choice state for displaying long lists of choices by spanning the choices across multiple pages.

Arguments

• name (string) – name used to identify and refer to the state

• opts.next (fn_or_str) – state that the user should visit after this state. Functions
should have the form f(choice) and return the name of the next state or a promise that
returns the name. The value of this inside f will be the calling ChoiceState() in-
stance.

• opts.question (string) – text to display to the user

• opts.error (string or LazyText) – error text to display to the user if we reach
this state in error. Optional.

• opts.accept_labels (boolean) – whether choice labels are accepted as the user’s
responses. For eg, if accept_labels is true, the state will accepts both “1” and “Red”
as responses responses if the state’s first choice is “Red”. Defaults to false.

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Defaults to true.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Defaults to true.

• opts.back (string) – the choice label to display to the user for going back a page.
Default is “Back”.

• opts.more (string) – the choice label to display to the user for going to the next page
Default is “Next”.

• opts.options_per_page (int) – maximum number of choices to display per page.
Default is 8. If this option is explicitly given as null, PaginatedChoiceState()
will automatically divide up the given choices to fit within the character limit given by the
’characters_per_page’ option.

• opts.characters_per_page (int) – maximum number of characters to display per
page. Default is null (i.e. no maximum), or 160 if the ’characters_per_page’
option is explicitly given as null.

• opts.events (object) – Optional event name-listener mappings to bind.

class BookletState(name, opts)
A state for displaying paginated text.

Arguments

22 Chapter 3. States

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• name (string) – name of the state

• opts.pages (integer) – total number of pages.

• opts.page_text (function) – function func(n) returning the text of page n. Pages
are numbered from 0 to (pages - 1). May return a promise.

• opts.initial_page (integer) – page number to use when the state is entered. Op-
tional, default is 0.

• opts.buttons (object) – map of user inputs to amounts to increment the page number
by. The special value ‘exit’ triggers moving to the next state. Optional, default is: {"1":
-1, "2": +1, "0": "exit"},

• opts.footer_text (string) – text to append to every page. Optional, default is: "1
for prev, 2 for next, 0 to end."

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Defaults to true.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Defaults to true.

• opts.next (fn_or_str_or_obj) – state that the user should visit after this state.
May either be the name of the next state, an options object representing the next state, or a
function of the form f(content) returning either, where content is the input given by
the user. If next is null or not defined, the state machine will be left in the current state.
See State.set_next_state().

• opts.events (object) – Optional event name-listener mappings to bind.

class PaginatedState(name, opts)
Add state type that divides up the given text into pages.

Arguments

• name (string) – name used to identify and refer to the state

• opts.text (string or LazyText) – the content to display to the user.

• opts.page – The function to use to determine the text shown to the user.

The function should return the text to be displayed to the user as a string and take the form
fn(i, text, n), where i‘ is the user’s 0-indexed current page number,‘‘text‘‘ is the
translated text, n is the maximum number of characters that can fit on the page (after taking
into account the nagivation choices) and this is the PaginatedState() instance.

When the function returns a falsy value, page i - 1 is taken as the last page to be displayed
to the user. The function may also return a promise fulfilled with the value.

If this option is not provided, the PaginatedState() will use a default function
that will display the words that fit on the page based on the values of i and the given
’characters_per_page’ option.

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Defaults to true.

• opts.characters_per_page (int) – maximum number of characters to display per
page (including the characters needed for the navigation choices). Default is 160. ’back’,
’more’ and ’exit’ choices.

• opts.back (string) – the label to display to the user for going back a page. Defaults
to ’Back’.

3.2. State reference 23

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• opts.more (string) – the label to display to the user for going to the next page. De-
faults to ’More’.

• opts.exit (string) – the choice label to display to the user for going to the next state.
Defaults to ’Exit’.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Defaults to true.

• opts.next (function or string) – state that the user should visit after this state.
May either be the name of the next state, an options object representing the next state,
or a function of the form f(content) returning either, where content is the in-
put given by the user when the user chooses to exit the PaginatedState(). If
next is null or not defined, the state machine will be left in the current state. See
State.set_next_state().

• opts.events (object) – Optional event name-listener mappings to bind.

class EndState(name, opts)
A state which displays text and then ends the session.

Arguments

• name (string) – name used to identify and refer to the state

• opts.text (string or LazyText) – text to display to the user

• opts.next (fn_or_str_or_obj) – state that the user should visit after this state.
May either be the name of the next state, an options object representing the next state, or a
function of the form f(content) returning either, where content is the input given by
the user. If next is null or not defined, the state machine will be left in the current state.
See State.set_next_state().

• opts.events (object) – Optional event name-listener mappings to bind.

class FreeText(name, opts)
A state which displays a text, then allows the user to respond with any text.

Arguments

• name (string) – name used to identify and refer to the state

• opts.question (string or LazyText) – text to display to the user.

• opts.send_reply (boolean) – whether or not a reply should be sent to the user’s
message. Defaults to true.

• opts.continue_session (boolean) – whether or not this is the last state in a ses-
sion. Defaults to true.

• opts.check (function) – a function func(content) for validating a user’s re-
sponse, where content is the user’s input. If a string LazyText() is returned, the text
will be taken as the error response to send back to the user. If a StateInvalidError()
is returned, its response property will be taken as the error response to send back to the
user. Any other value returned will be taken as a non-error. The result may be returned via
a promise. See State.validate().

• opts.next (fn_or_str_or_obj) – state that the user should visit after this state.
May either be the name of the next state, an options object representing the next state, or a
function of the form f(content) returning either, where content is the input given by
the user. If next is null or not defined, the state machine will be left in the current state.
See State.set_next_state().

24 Chapter 3. States

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• opts.events (object) – Optional event name-listener mappings to bind.

3.3 What are states?

A state corresponds to a small piece of an application. It might represent a single question in a survey, a menu, a
greeting to send or a small booklet of text for someone to page through on their phone.

Each state has a name and a function to construct it, called its creator. The creator takes the name of a state and options
and should return an instance of State().

Each state should transfer control to the next state once it is done.

States often have text to be displayed (to a person on their phone) and validation functions to parse input received.

3.4 How are applications built from states?

An application is a set of state creators collected into an App(). An App() is controlled by an
InteractionMachine() which manages states and links an application to the low-level sandbox API.

An InteractionMachine() receives messages from people (via the sandbox API) and directs those messages to
the current state. It also tracks what state a person is interacting with and manages transitions to new states.

Last but not least, an InteractionMachine() provides a set of high-level interfaces to the sandbox API’s re-
sources. These allow an application to perform actions such as looking up or modifying a contact, logging errors or
warnings, making HTTP requests or storing persistent data in a key-value store.

3.5 Delegation and virtual states

Some state creators represent virtual states. Instead of returning a state with the name associated with them, they return
a state with a different name. Virtual creators are said to delegate to another state.

Delegators usually select between one of a set of other states and help structure applications cleanly and avoid repeti-
tion of logic for selecting which state to go to next.

3.6 What kinds of states are available?

An overview of the states available in the toolkit can be found in the Overview of States.

3.7 Reference

A complete reference guide to the available states can be found in the State reference.

3.3. What are states? 25

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

26 Chapter 3. States

CHAPTER 4

Logging

class Logger(im)
Provides logging for the app and interaction machine.

Arguments

• im (InteractionMachine) – the interaction machine associated to the logger.

The initialised logger can also be invoked directly, which delegates to Logger.info():

im.log('foo');

static critical(message)
Logs a message at the ’CRITICAL’ log level

Arguments

• message (string) – The message to log.

static debug(message)
Logs a message at the ’DEBUG’ log level

Arguments

• message (string) – The message to log.

static error(message)
Logs a message at the ’ERROR’ log level

Arguments

• message (string) – The message to log.

static info(message)
Logs a message at the ’INFO’ log level

Arguments

• message (string) – The message to log.

static warning(message)
Logs a message at the ’WARNING’ log level

Arguments

• message (string) – The message to log.

27

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

28 Chapter 4. Logging

CHAPTER 5

User

User() is used for short-term information about a user interacting with your application. Most of this information
relates to the current interaction session with the user, and includes the user’s current state, user’s answers to previous
states and language preference. While User() is used for short-term information about a user, a Contact() holds
long-term information.

User(im)
A structure for managing the current user being interacted with in InteractionMachine().

Arguments

• im (InteractionMachine) – the interaction machine to which this user is associated

static create(addr, opts)
Invoked to create a new user. Simply delegates to User.setup(), but sets the user’s
creation_event to UserNewEvent(). Intended to be used to explicitly differentiate newly cre-
ated users from loaded users with a single action.

static created
Whether this is a new or loaded user.

static default_ttl()
Returns the default expiry time of saved user state (in seconds).

This may be set using the user_ttl sandbox config key. It defaults to 604800 seconds (seven days).
Expiry may be disabled by setting user_ttl to null.

static fetch()
Fetches the user’s current state data from the key-value data store resource. Returns a promised fulfilled
with the fetched data.

static get_answer(state_name)
Get the user’s answer for the state associated with state_name.

Arguments

• state_name (string) – the name of the state to retrieve an answer for

static is_in_state([state_name])
Determines whether the user is in the state represented by state_name, or whether the user is in any
state at all if no arguments are given.

Arguments

• state_name (string) – the name of the state compare with

29

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static key()
Returns the key under which to store user state. If user.store_name is set, stores the user under
users.<store_name>.<addr>, or otherwise under users.<addr>.

static load(addr[, opts])
Load a user’s current state from the key-value data store resource, then sets the user’s creation_event
to UserLoadEvent(). Throws an error if loading fails.

Returns a promise that is fulfilled when the loading and event emitting has completed.

Accepts the same params as User.setup(), where the opts param contains overrides for the loaded
user data.

static load_or_create(addr[, opts])
Attempts to load a user’s current state from the key-value data store resource, creating the user if no existing
user was found. Sets the user’s creation_event to UserLoadEvent() if the user was loaded, and
UserNewEvent() if the user was created.

Returns a promise that is fulfilled when the loading and event emitting has completed.

Accepts the same params as User.setup(), where the opts param contains overrides for the loaded
user data.

static make_key(addr[, store_name])
Makes the key under which to store a user’s state. If store_name is set, stores the user under
’users.<store_name>.<addr>, or otherwise under <addr>.

Arguments

• addr (string) – The address used as a key to load and save the user.

• store_name (string) – The namespace path to be used when storing the user.

static refresh_i18n()
Re-fetches the appropriate language translations. Sets user.i8n to a new Translator() instance.

Returns a promise that fires once the translations have been refreshed.

static reset(addr, opts)
Invoked to create a new user. Simply delegates to User.setup(), but sets the user’s
creation_event to a UserResetEvent(). Intended to be used to explicitly differentiate reset
users from both newly created users and loaded users with a single action.

static save()
Save a user’s current state to the key-value data store resource, then emits a UserSaveEvent().

Arguments

• opts.seconds (object) – How long the user’s state should be stored for before ex-
piring. See User.default_ttl() for how the default is determined.

Returns a promise that is fulfilled once the user data has been saved and events have been emitted.

static serialize()
Returns an object representing the user. Suitable for JSON stringifying and storage purposes.

static set_answer(state_name, answer)
Sets the user’s answer to the state associated with state_name.

Arguments

• state_name (string) – the name of the state to save an answer for

• answer (string) – the user’s answer to the state

30 Chapter 5. User

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static set_lang(lang)
Gives the user a new language. If the user’s language has changed, their translator is is refreshed (dele-
gates to User.refresh_i18n()). Returns a promise that will be fulfilled once the method’s work is
complete.

Arguments

• lang (string) – The two-letter code of the language the user has selected. E.g. en, sw.

static setup(addr, opts)
Sets up the user. Returns a promise that is fulfilled once the setup is complete.

Performs the following steps:

• Processes the given setup arguments

• Attempts to refresh the translator (involves interaction with the sandbox api).

• Emits a SetupEvent()

Arguments

• addr (string) – the address used as a key to load and save the user.

• opts.lang (string) – the two-letter code of the language the user has selected. E.g.
‘en’, ‘sw’.

• opts.store_name (string) – an additional namespace path to be used when storing
the user. See User.key().

• opts.state.name (string) – the name of the state most recently visited by the user.
Optional.

• opts.state.metadata (string) – metadata about the state most recently visited
by the user. Optional.

• opts.in_session (boolean) – whether the user is currently in a session. Defaults
to false.

class UserEvent(user)
An event relating to a user.

Arguments

• name (string) – the event type’s name.

• user (User) – the user associated to the event.

class UserLoadEvent(user)
Emitted when an existing user is loaded. This typically happens in InteractionMachine() when message
arrives from a user for who has already interacted with the system.

Arguments

• user (User) – the user that was loaded.

The event type is user:load.

class UserNewEvent(user)
Emitted when a new user is created. This typically happens in InteractionMachine() when message
arrives from a user for whom there is no user state (i.e. a new unique user).

Arguments

• user (User) – the user that was created.

31

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

The event type is user:new.

class UserNewEvent(user)
Emitted when a user’s data is reset. This typically happens in InteractionMachine() when message
arrives from a user for whom with its content being ”!reset”, forcing the user to be reset.

Arguments

• user (User) – the user that was reset.

The event type is user:reset.

class UserSaveEvent(user)
Emitted when a user is saved. This typically happens in InteractionMachine() after an inbound message
from the user has been processed as one of the last actions before terminating the sandbox.

Arguments

• user (User) – the user that was saved.

The event type is user:save.

32 Chapter 5. User

CHAPTER 6

Config

class IMConfig(im)
Provides access to an InteractionMachine()‘s config data.

Arguments

• im (InteractionMachine) – the interaction machine to which this config is associated

static setup()
Sets up the interaction machine’s config by reading the config from its value in the interaction machine’s
sandbox config (the value of the config key in the sandbox config). Emits a Setup() event once setup is
complete. returns a promise that is fulfilled after setup is complete and after event listeners have done their
work.

class IMConfigError(message)
Thrown when an error occurs while validating or accessing something on the interaction machine’s config.

Arguments

• config (IMConfig) – the im’s config.

• message (string) – the error message.

class SandboxConfig(im)
Provides access to the sandbox’s config data.

Arguments

• im (InteractionMachine) – the interaction machine to which this sandbox config is
associated

static get(key, opts)
Retrieve a value from the sandbox application’s Vumi Go config. Returns a promise that will be fulfilled
with the config value.

Arguments

• key (string) – name of the configuration item to retrieve.

• opts.json (boolean) – whether to parse the returned value using JSON.parse.
Defaults to false.

33

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

34 Chapter 6. Config

CHAPTER 7

Contacts

Contacts hold information about the users interacting with your application. While User() is used for short-term
information about a user (usually information related to a particular interaction session), a Contact() holds long-
term information.

class Contact(attrs)
Holds long-term information about a user interacting with the application.

Arguments

• attrs.key (string) – A unique identifier for looking up the contact.

• attrs.user_account (string) – The name of the vumi go account that the contact
is stored under.

• attrs.msisdn (string) – The contact’s msisdn.

• attrs.gtalk_id (string) – The contact’s gtalk address. Optional.

• attrs.facebook_id (string) – The contact’s facebook address. Optional.

• attrs.twitter_handle (string) – The contact’s twitter handle. Optional.

• attrs.name (string) – The contact’s name. Optional.

• attrs.surname (string) – The contact’s surname. Optional.

• attrs.extra (object) – A data object for additional, app-specific information about a
contact. Both the keys and values need to be strings. Optional.

• attrs.extras-<name> (object) – An alternative way of specifying an extra. Op-
tional.

• attrs.groups (array) – A list of keys, each belonging to a group that this contact is a
member of. Optional.

static serialize()
Returns a deep copy of the contact’s attributes.

Contact.do.reset(attrs)
Resets a contact’s attributes to attrs. All the contact’s current attributes will be lost.

Arguments

• attrs (object) – the attributes to reset the contact with.

Contact.do.validate()
Validates a contact, throwing a ValidationError() if one of its attributes are invalid.

35

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

ContactStore(im)
Provides ‘ORM-like’ access to the sandbox’s contacts resource, handling the raw contact resource api requests
and allowing people to interact with their contacts as Contact() instances.

Arguments

• im (InteractionMachine) – The interaction machine

static create(attrs)
Creates and adds a new contact, returning a corresponding Contact() via a promise.

Arguments

• attrs (object) – The attributes to initialise the new contact with.

self.im.contacts.create({
surname: 'Jones',
extra: {location: 'CPT'}

}).then(function(contact) {
console.log(contact instanceof Contact);

});

static for_user(opts)
Retrieves a contact for the the current user in the InteractionMachine(), returning a corresponding
Contact() via a promise. If no contact exists for the user, a contact is created.

Arguments

• opts.create (boolean) – Whether to create a contact for the user if it does not yet
exist. Defaults to true.

• opts.delivery_class (string) – The delivery class corresponding to the
current user’s address. If not specified, ContactStore() uses its fallback,
ContactStore.delivery_class.

self.im.contacts.for_user().then(function(contact) {
console.log(contact instanceof Contact);

});

static get(addr[, opts])
Retrieves a contact by its address for a particular delivery class, returning a corresponding Contact()
via a promise.

Arguments

• addr (boolean) – The address of the contact to be retrieved.

• opts.create (boolean) – Create the contact if it does not yet exist. Defaults to
false.

• delivery_class (string) – The delivery class corresponding to the
given address. If not specified, ContactStore() uses its fallback,
ContactStore.delivery_class.

self.im.contacts.get('+27731234567').then(function(contact) {
console.log(contact instanceof Contact);

});

The following delivery classes are supported:

• sms: maps to the contact’s msisdn attribute

• ussd: maps to the contact’s msisdn attribute

36 Chapter 7. Contacts

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• gtalk: maps to the contact’s gtalk_id attribute

• twitter: maps to the contact’s twitter_handle attribute

static get(key)
Retrieves a contact by its key, returning a corresponding Contact() via a promise.

Arguments

• key (string) – The contact’s key.

self.im.contacts.get('1234').then(function(contact) {
console.log(contact instanceof Contact);

});

static request(name, cmd)
Makes raw requests to the api’s contact resource.

Arguments

• name (string) – The name of the contact api method (for eg, ’get’)

• cmd (object) – The request’s command data

static save(contact)
Saves the given contact to the store, returning a promise that is fulfilled once the operation completes.

Arguments

• contact (Contact) – The contact to be saved

static search(query)
Searches for contacts matching the given Lucene search query, returning an array of the matching
Contact() instances via a promise. Note that this can be a fairly heavy operation. If only the con-
tact keys are needed, please use ContactStore.search_keys() instead.

Arguments

• query (string) – The Lucene query to perform

self.im.contacts.search('name:"Moog"').then(function(contacts) {
contacts.forEach(function(contact) {

console.log(contact instanceof Contact);
});

});

static search_keys(query)
Searches for contacts matching the given Lucene search query, returning an array of the contacts’ keys via
a promise.

Arguments

• query (string) – The Lucene query to perform

self.im.contacts.search_keys('name:"Moog"').then(function(keys) {
keys.forEach(function(key) {

console.log(typeof key == 'string');
});

});

class Group(attrs)
Holds information about a group of contacts.

param string attrs.key a unique identifier for looking up the contact.

37

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

param string attrs.user_account the name of the vumi go account that owns this group.

param string attrs.name a human-readable name for the group.

param string attrs.query the contact search query that determines the contacts in this
group. Optional.

static serialize()
Returns a deep copy of the group’s attributes.

Group.do.reset(attrs)
Resets a groups’s attributes to attrs. All the groups’s current attributes will be lost.

Arguments

• attrs (object) – the attributes to reset the group with.

Group.do.validate()
Validates a group, throwing a ValidationError() if one of its attributes are invalid.

GroupStore(im)
Provides ‘ORM-like’ access to the sandbox’s group resource, allowing people to interact with their groups as
Group() instances.

Arguments

• im (InteractionMachine) – The interaction machine

static get(name[, opts])
Retrieves a group by its name, returning a corresponding Group() via a promise.

Arguments

• name (string) – The name of the group to retrieve.

• opts.create (boolean) – Create the group if it does not yet exist. Defaults to
false.

self.im.groups.get('spammers').then(function(group) {
console.log(group instanceof Group);

});

static get_by_key(key)
Retrieves a group by its key, returning a corresponding Group() via a promise.

Arguments

• key (string) – The group’s key.

self.im.groups.get_by_key('1234').then(function(group) {
console.log(group instanceof Group);

});

static list()
Returns a promise fulfilled with a list of the Group()‘s stored under the account associated with the app.

static request(name, cmd)
Makes raw requests to the api’s group resource.

Arguments

• name (string) – The name of the group api method (for eg, ’get’)

• cmd (object) – The request’s command data

38 Chapter 7. Contacts

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static save(group)
Saves the given group to the store, returning a promise that is fulfilled once the operation completes.

Arguments

• group (Group) – The group to be saved

static search(query)
Searches for groups matching the given Lucene search query, returning an array of the matching Group()
instances via a promise.

Arguments

• query (string) – The Lucene query to perform

self.im.groups.search('name:"spammers"').then(function(groups) {
groups.forEach(function(group) {

console.log(group instanceof Group);
});

});

static setup()
Sets up the store.

static sizeOf(group)
Returns a promise fulfilled with the number of contacts that are members of the given group.

Arguments

• group (Group) – The group who’s size needs to be determined.

39

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

40 Chapter 7. Contacts

CHAPTER 8

HTTP API

class HttpApi(im, opts)
A helper class for making HTTP requests via the HTTP sandbox resource.

Arguments

• im (InteractionMachine) – The interaction machine to use when making requests.

• opts.headers (object) – Default headers to use in HTTP requests.

• opts.auth (object) – Adds a HTTP Basic authentication to the default headers. Should
contain username and password attributes.

• opts.verify_options (string) – The default list of options to verify when doing
HTTPS requests. Optional.

• opts.ssl_method (string) – The default ssl method to attempt for HTTPS requests.
Optional.

static decode_response_body(body)

Arguments

• body (string) – The body to decode.

Sub-classes should override this to decode the response body and throw an exception if the body cannot
be parsed. This base implementation returns the body as-is (i.e. decoding is left to the code calling the
HttpApi()).

static delete(url, opts)
Make an HTTP DELETE request.

Arguments

• url (string) – The URL to make the request to.

• opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static encode_request_data(data)

Arguments

• data (object) – The data to encode.

Sub-classes should override this to encode the request body and throw an exception if the data cannot
be encoded. This base implementation returns the data as-is (i.e. encoding is left to code calling the
HttpApi()).

41

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static get(url, opts)
Make an HTTP GET request.

Arguments

• url (string) – The URL to make the request to.

• opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static head(url, opts)
Make an HTTP HEAD request.

Arguments

• url (string) – The URL to make the request to.

• opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static parse_reply(reply, request)
Check an HTTP reply and throw an HttpRequestError() if the sandbox API command was unsuc-
cessful, or otherwise parse the sandbox’s reply into a response. If the response status code is not in the 200
range or the reply body cannot be decoded, throw an HttpResponseError().

Logs an error via the sandbox logging resource in an error is raised.

Arguments

• reply (object) – Raw response to the sandbox API command.

• request (HttpRequest) – The request that initiated the sandbox API command.

Returns an HttpResponse() or throws an HttpApiError() (either the HttpRequestError()
or HttpResponseError() derivative, depending on what error occured).

static post(url, opts)
Make an HTTP POST request.

Arguments

• url (string) – The URL to make the request to.

• opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static post(url, opts)
Make an HTTP PATCH request.

Arguments

• url (string) – The URL to make the request to.

• opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static put(url, opts)
Make an HTTP PUT request.

42 Chapter 8. HTTP API

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

Arguments

• url (string) – The URL to make the request to.

• opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static request(method, url, opts)

Arguments

• method (string) – The HTTP method to use (e.g. GET, POST).

• url (string) – The URL to make the request to. If you pass in query parameters using
opts.params, don’t include any in the URL itself.

• opts.params – An object of key-value pairs to append to the URL as query parameters.
Can be in any form accepted by node.js’s querystring module

• opts.data (object) – Data to pass as the request body. Will be encoded using
HttpApi.encode_request_data() before being sent.

• opts.headers (object) – Additional headers to add to the default headers.

Returns a HttpResponse() via a promise. Failures while making and checking the request
will be thrown as HttpApiError‘s, and can be caught with a Q errback. See
:meth:‘HttpApi.parse_reply() for more on the response parsing and error throwing.

class HttpApiError()
Thrown when an error occurs while making and checking an HTTP request and the corresponding API reply.

class HttpRequest(request, code, opts)
Encapsulates information about an HTTP request made by the HttpApi(). Once
HttpRequest.encode() has been invoked, the request’s data is encoded and made available as the
request’s body.

Arguments

• method (string) – the HTTP request method.

• url (string) – the url to send the request to.

• opts.data (string) – the request’s data to be encoded as the request’s body. Optional.

• opts.params – An object of key-value pairs to append to the URL as query parameters.
Can be in any form accepted by node.js’s querystring module

• opts.verify_options (string) – A list of options to verify when doing an HTTPS
request. Optional.

• opts.ssl_method (string) – A request for a specific ssl method to be attempted.
Optional.

static encode()
Encodes the request data (if available).

static to_cmd()
Returns a sandbox API command that can be used to initiate this request via the sandbox API.

class HttpRequestError(request, reason)
Thrown when an error occurs while making and checking an HTTP request.

Arguments

43

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• request (HttpRequest) – the request.

• reason (string) – the reason for the failure. Optional.

class HttpResponse(request, code, opts)
Encapsulates information about an HTTP response given to the HttpApi(). Once
HttpResponse.decode() has been invoked, the response’s body is decoded and made available as
the response’s data.

Arguments

• request (HttpRequest) – the request that caused the response.

• code (integer) – the status code for the HTTP response.

• opts.body (string) – the response’s body to be decoded as the response’s data. Op-
tional.

static decode()
Decodes the responses body (if available).

class HttpResponseError(response, reason)
Thrown when an error response is returned by an HTTP request or if the HTTP response body cannot be parsed.

Arguments

• response (HttpResponse) – the response.

• reason (string) – the reason for the failure. Optional.

class JsonApi(im, opts)
A helper class for making HTTP requests that send and receive JSON encoded data.

Arguments

• im (InteractionMachine) – The interaction machine to use when making requests.

• opts.headers (object) – Default headers to use in HTTP requests.
The Content-Type header is overridden to be application/json;
charset=utf-8.

• opts.auth (object) – Adds a HTTP Basic authentication to the default headers. Should
contain username and password attributes.

static decode_response_body(body)
Decode an HTTP response body using JSON.parse().

Arguments

• body (string) – Raw HTTP response body to parse.

Returns the decoded response body.

static encode_request_data(data)
Encode an object as JSON using JSON.stringify().

Arguments

• data (object) – Object to encode to JSON.

Returns the serialized object as a string.

44 Chapter 8. HTTP API

CHAPTER 9

Metrics

class MetricStore(im)
Provides metric firing capabilties for the InteractionMachine().

Arguments

• im (InteractionMachine) – the interaction machine to which this sandbox config is
associated

static fire(metric, value, agg)
Fires a metric.

Arguments

• metric (string) – the name of the metric

• value (number) – the value of the metric

• agg (string) – the aggregation method to use

static setup([opts])
Sets up the metric store.

Arguments

• opts.store_name – the store/namespace to use for fired metrics. Defaults to ‘default’

MetricStore.fire.avg(metric, value)
Fires a metric with the avg aggregation method.

Arguments

• metric (string) – the name of the metric

• value (number) – the value of the metric

MetricStore.fire.inc(metric[, opts])
Increments the value for the key metric in in the kv store, fires a metric with the new total using the ’last
aggregation method, then returns the total via a promise.

Arguments

• metric (string) – the name of the metric

• opts.amount (number) – the amount to increment by. Defaults to 1.

MetricStore.fire.last(metric, value)
Fires a metric with the last aggregation method.

Arguments

45

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• metric (string) – the name of the metric

• value (number) – the value of the metric

MetricStore.fire.max(metric, value)
Fires a metric with the max aggregation method.

Arguments

• metric (string) – the name of the metric

• value (number) – the value of the metric

MetricStore.fire.min(metric, value)
Fires a metric with the min aggregation method.

Arguments

• metric (string) – the name of the metric

• value (number) – the value of the metric

MetricStore.fire.sum(metric, value)
Fires a metric with the sum aggregation method.

Arguments

• metric (string) – the name of the metric

• value (number) – the value of the metric

46 Chapter 9. Metrics

CHAPTER 10

Events

class Event()
A structure for events fired in various parts of the toolkit.

Arguments

• name (string) – the event’s name.

• data (string) – the event’s data. Optional.

class Event()
Lightweight wrapper around EventEmitter() for working better with Q promises and the toolkit’s
Event() objects.

Eventable.emit(event)
Emits the given event and returns a promise that will be fulfilled once each listener is done. This allows listeners
to return promises.

Arguments

• event (Event) – the event to emit.

static setup()
Shortcut for emitting a setup event for the instance (since this is done quite often). See SetupEvent().

static teardown()
Shortcut for emitting a teardown event for the instance. See TeardownEvent().

Eventable.once.resolved(event_name)
Returns a promise that will be fulfilled once the event has been emitted. Since a promise can only be fulfilled
once, the event listener is removed after the event is emitted. Useful for testing events.

Arguments

• event_name (string) – the event to listen for.

Eventable.teardown_listeners()
Removes all event listeners, with the following exception: listeners for TeardownEvent()s get rebound
using Eventable.once(), regardless of whether they were orginally bound using Eventable.on() or
Eventable.once(). This allows us to remove all event listeners for instances of Eventable(), while
still allowing other entities to know when the teardown of the entity has completed.

Not that it is up to the caller to emit the TeardownEvent() to clear the listeners.

class SetupEvent(instance)
Emitted when an instance of something has been constructed.

Arguments

47

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• instance (object) – the constructed instance.

class TeardownEvent(instance)
Emitted when an instance of something has completed the tasks it needs to complete before it can be safely
disposed of.

Arguments

• instance (object) – the instance.

48 Chapter 10. Events

CHAPTER 11

AppTester

11.1 API

class AppTester(app, opts)
Machinery for testing a sandbox application.

Provides setup, interaction and checking tasks. Whenever a task method is called, its task is scheduled to run
next time AppTester.run() is called.

Arguments

• app (App) – the sandbox app to be tested.

• opts.api (object) – options to initialise the tester’s DummyApi() with each reset.

static reset()
Clears scheduled tasks and data, and uses a new api and interaction machine, clearing things for the next
tester run.

static run()
Runs the tester’s scheduled tasks in the order they were scheduled, then resets the tester. Returns a promise
which will be fulfilled once the scheduled tasks have run and the tester has reset itself.

11.1.1 Setup Tasks

Setup tasks are used to configure the sandbox app’s config and store data before any interaction and checking is done.

AppTester.setup(fn)
Allows custom setting up of the sandbox application’s config and data.

Arguments

• fn (function) – function to be used to set up the sandbox application. Takes the form
func(api), where api is the tester’s api instance and this is the AppTester() in-
stance. May return a promise.

tester.setup(function(api) {
api.config.store.foo = 'bar';

});

AppTester.setup.char_limit(n)
Sets the character limit checked during the checking phase of the tester run. The default character limit is 160.

Arguments

49

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• n (object) – the new character limit to set.

tester.setup.char_limit(20);

AppTester.setup.config(obj)
Updates the sandbox config with the properties given in obj.

Arguments

• obj (object) – the properties to update the current app config with.

• opts.json (object) – whether these config options should be serialized to JSON.

tester.setup.config({foo: 'bar'});

AppTester.setup.config(obj)
Updates the sandbox’s app config (the ’config’ field in the sandbox config) with the properties given in obj.

Arguments

• obj (object) – the properties to update the current app config with.

tester.setup.config.app({name: 'some_amazing_app'});

AppTester.setup.endpoint(endpoint, delivery_class)
Updates the sandbox’s app config (the ’config’ field in the sandbox config) with the given outbound end-
points.

Arguments

• str (opts.delivery_class) – the name of the endpoint to configure

• str – the name of the delivery class. See ContactStore.get() for a list of the sup-
ported delivery classes.

tester.setup.config.endpoint('sms_endpoint', {
delivery_class: 'sms',

});

AppTester.setup.kv(obj)
Updates the app’s kv store with the properties given in obj.

Arguments

• obj (object) – the properties to update the current kv store with.

tester.setup.kv({foo: 'bar'});

AppTester.setup.user(obj)
Updates the currently stored data about the user with the properties given in obj.

Arguments

• obj (object) – the properties to update the currently stored user data with

tester.setup.user({
addr: '+81',
lang: 'jp'

});

If any properties other than addr are given, AppTester assumes that this is an existing
user. This effects whether a :class:‘UserNewEvent() or UserLoadEvent() will be
fired during the sandbox run.

50 Chapter 11. AppTester

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

AppTester.setup.user(fn)
Passes the currently stored user data to the function fn, then set the stored user data to the function’s result.

Arguments

• fn (function) – function of the form func(user), where user is the currently stored
user data object and this is the AppTester() instance. The stored user data is set with
fn‘s result. May return its result via a promise.

tester.setup.user(function(user) {
user.addr = '+81';
user.lang = 'jp';
return user;

})

If any properties other than addr are given, AppTester assumes that this is an existing
user. This effects whether a :class:‘UserNewEvent() or UserLoadEvent() will be
fired during the sandbox run.

AppTester.setup.user.addr(addr)
Sets the from address of the user sending a message received by the sandbox app.

Arguments

• addr (string) – the user’s new from address

tester.setup.user.addr('+27987654321');

AppTester.setup.user.answer(state_name, answer)
Sets the user’s answer to a state already encountered.

Arguments

• state_name (string) – the name of the state to set an answer for.

• answer (string) – the answer given by the user for the state

tester.setup.user.answer('initial_state', 'coffee');

AppTester.setup.user.answers(answers)
Sets the user’s answers to states already encountered by the user.

Arguments

• answers (object) – (state name, answer) pairs for each state the user has encountered
and answered

tester.setup.user.answers({
initial_state: 'coffee',
coffee_state: 'yes'

});

AppTester.setup.user.lang(lang)
Sets the user’s language code.

Arguments

• lang (string) – the user’s new language code (eg, ‘en’ or ‘af’)

tester.setup.user.lang('af');

AppTester.setup.user.metadata(metadata)
Updates the user’s metadata. Any properties in the current metadata with the same names as properties in the
new metadata will overwritten.

11.1. API 51

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

Arguments

• metadata (object) – The new metadata to update the current user metadata with.

tester.setup.user.metadata({foo: 'bar'});

AppTester.setup.user.state(state_name[, opts])
Sets the state most recently visited by the user using a state name.

Arguments

• name (string) – The name of the state.

• opts.metadata (object) – metadata associated with the state. Optional.

• opts.creator_opts (object) – options to be given to the creator associated with the
given state name. Optional.

tester.setup.user.state('initial_state', {
metadata: {foo: 'bar'},
creator_opts: {baz: 'qux'}

});

AppTester.setup.user.state(opts)
Sets the state most recently visited by the user using options.

Arguments

• opts.name (string) – The name of the state.

• opts.metadata (object) – Optional state metadata.

• opts.creator_opts (object) – options to be given to the creator associated with the
given state name. Optional.

tester.setup.user.state({
name: 'initial_state',
metadata: {foo: 'bar'},
creator_opts: {baz: 'qux'}

});

AppTester.setup.user.state.creator_opts(opts)
Updates the options passed to the state creator of the state most recently visited by the user.

Arguments

• opts (object) –

The new options to update the current creator options with. Any properties in the
current creator options with the same names as properties in the new options will over-
written.

States are created typically created twice (on the first sandbox run when we switch to the
state, and on the next sandbox run when we give the state the user’s input). This makes this
setup method useful for setting up the options for the second sandbox run.

tester.setup.user.state.creator_opts({foo: 'bar'});

AppTester.setup.user.state.metadata(metadata)
Updates the metadata of the state most recently visited by the user.

Arguments

52 Chapter 11. AppTester

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• metadata (object) – The new metadata to update the current state metadata with. Any
properties in the current metadata with the same names as properties in the new metadata
will overwritten.

tester.setup.user.state.metadata({foo: 'bar'});

11.1.2 Interaction Tasks

Interaction tasks are used to simulate interaction with the sandbox. Input interactions are the most common, where the
sandbox receives a message sent in by a user.

AppTester.input(content)
Updates the content of the message to be sent from the user into the sandbox. If the content is null or
undefined, defaults the message’s session event to ’new’, or otherwise to ‘‘’resume’.

Arguments

• content (string or null) – the new content of the message to be sent

tester.input('coffee');

AppTester.input()
Updates the content of the message to be sent from the user into the sandbox to be null and defaults the
message’s session event type to ‘new’. Typically used to test starting up a session with the user.

tester.input();

AppTester.input(obj)
Updates the message to be sent from the user into the sandbox with the properties given in obj.

Arguments

• obj (object) – the properties to update on the message to be sent

tester.input({
content: 'coffee',
session_event: 'resume'

});

AppTester.input(fn)
Passes the current message data to be sent from the user into the sandbox into the function fn, then sets it with
the function’s result.

Arguments

• fn (function) – function of the form func(msg), where msg is the current message
data and this is the AppTester() instance. The current message is updated with fn‘s
result. May return its result via a promise.

tester.input(function(msg) {
msg.content = 'coffee';
return msg;

})

AppTester.input.content(content)
Updates the content of the message to be sent from the user into the sandbox.

Arguments

• content (string) – the new content of the message to be sent

11.1. API 53

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

tester.input.content('coffee');

AppTester.input.session_event(session_event)
Updates the session event of the message to be sent from the user into the sandbox.

Arguments

• session_event (string) – the session event of the message to be sent.

The following session event values are recognised:

•’new’: used to signal the start of the session, where the session has been initiated by the user. The content
of the message is irrelevant.

•’resume’: a common message sent in from the user during a session

•’close’: used to signal the end of the session, where the session has been terminated by the user. The
content of the message is irrelevant.

tester.input.session_event('resume');

AppTester.inputs(input1[, input2[, ...]])
Sets a collection of messages to be sent from the user into the sandbox. Each input corresponds to a new message
in a new interaction. AppTester() setup methods will count for the first interaction, subsequent interactions
will rely on api state from the previous interaction, and check methods will only happen after the last interaction.

Arguments

• input1, input2, ... (arguments) – The messages to be given as input in each
interaction. If an object is given for an input, the object’s properties are used as the actual
message properties. null or string inputs will be taken as the message content for that
particular message.

tester.inputs(null, 'coffee', '1', {content: '2'});

AppTester.inputs(fn)
Passes the current messages to be sent from the user into the sandbox into the function fn, then sets it with the
function’s result.

Arguments

• fn (function) – function of the form func(msgs), where msgs is the current mes-
sages and this is the AppTester() instance. The current messages are updated with
fn‘s result. May return its result via a promise.

tester.inputs(function(msgs) {
return msgs.concat('coffee');

})

AppTester.start()
Updates the content of the message to be sent from the user into the sandbox to be null and defaults the message’s
session event type to ‘new’. Typically used to test starting up a session with the user.

tester.start();

11.1.3 Checking Tasks

Checking tasks are used to check the state of the sandbox application and its currently associated user (the user which
sent in a message to the sandbox application). The check tasks are where the test assertions happen.

54 Chapter 11. AppTester

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

AppTester.check(fn)
Allows custom assertions to be done after a sandbox run.

Arguments

• fn (function) – function that will be performing the assertions. Takes the form
func(api, im, app), where api is the tester’s api instance (by default an instance
of DummyApi()), im is the tester’s InteractionMachine() instance, app is the
sandbox app being tested and this is the AppTester() instance. May return a promise.

tester.check(function(api, im, app) {
assert.notDeepEqual(api.logs, []);

});

static interaction(opts)
Performs the checks typically done after a user has interacted with a sandbox app.

Arguments

• opts.state (string) – the expected name of user’s state at the end of the sandbox
run.

• opts.reply (string) – the expected content of the reply message sent back to the
user after the sandbox run. Optional.

• opts.char_limit (integer) – Checks that the content of the reply sent back to the
user does not exceed the given character count. Optional.

tester.check.interaction({
state: 'initial_state',
reply: 'Tea or coffee?'

});

AppTester.check.ends_session()
Checks if the reply message sent to the user was set to end the session. This happens, for example, when the
user reaches an EndState().

tester.check.reply.ends_session();

AppTester.check.reply(content)
Checks that the content of the reply sent back to the user during the sandbox run equals the expected content.
Alias to AppTester.check.reply.content().

Arguments

• content (string) – the expected content of the sent out reply.

tester.check.reply('Tea or coffee?');

AppTester.check.reply(re)
Checks that the content of the reply sent back to the user during the sandbox run matches the regex.

Arguments

• re (RegExp) – Regular expression to match the content of the sent out reply against.

tester.check.reply.content(/Tea or coffee?/);

AppTester.check.reply(obj)
Checks that the reply sent back to the user during the sandbox run deep equals obj.

Arguments

11.1. API 55

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• obj (object) – the properties to check the reply against

tester.check.reply({
content: 'Tea or coffee?'

});

AppTester.check.reply(fn)
Passes the reply sent back to the user during the sandbox run to the function fn, allowing custom assertions to
be done on the reply.

Arguments

• fn (function) – function of the form func(reply), where reply is the sent out reply
and this is the AppTester() instance.

tester.check.reply(function(reply) {
assert.equal(reply.content, 'Tea or coffee?');

})

AppTester.check.reply.char_limit(n)
Checks that the content of the reply sent back to the user does not exceed the character count given by n.

Arguments

• n (integer) – the character count that the sent out reply’s content is expected to not
exceed.

tester.check.reply.char_limit(10);

AppTester.check.reply.content(content)
Checks that the content of the reply sent back to the user during the sandbox run equals the expected content.
Alias to AppTester.check.reply.content().

Arguments

• content (string) – the expected content of the sent out reply.

tester.check.reply.content('Tea or coffee?');

AppTester.check.reply.content(re)
Checks that the content of the reply sent back to the user during the sandbox run matches the regex. Alias to
AppTester.check.reply.content().

Arguments

• re (RegExp) – Regular expression to match the content of the sent out reply against.

tester.check.reply.content(/Tea or coffee?/);

AppTester.check.reply.content(content)
Checks that no reply was sent back to the user.

tester.check.no_reply();

AppTester.check.reply.properties(obj)
Checks that the expected properties given in obj are equal to the corresponding properties of the reply sent
back to the user during the sandbox run.

Arguments

• obj (object) – the properties to check the reply against

56 Chapter 11. AppTester

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

tester.check.reply.properties({
content: 'Tea or coffee?'

});

AppTester.check.user(obj)
Checks that once serialized, the user deep equals obj.

Arguments

• obj (object) – the properties to check the user against

tester.check.user({
state: {name: 'coffee_state'},
answers: {initial_state: 'coffee'}

});

AppTester.check.user(fn)
Passes the current user instance to the function fn, allowing custom assertions to be done on the user. May
return a promise.

Arguments

• fn (function) – function of the form func(user), where user is the current user
instance and this is the AppTester() instance.

tester.check.user(function(user) {
assert.equal(user.state.name, 'coffee_state');
assert.equal(user.get_answer('initial_state', 'coffee');

})

AppTester.check.user.answer(state_name, answer)
Checks that the user’s answer to a state already encountered matches the expected answer.

Arguments

• state_name (string) – the name of the state to check the answer of.

• answer (string) – the expected answer by the user for the state

tester.check.user.answer('initial_state', 'coffee');

AppTester.check.user.answers(answers)
Checks that the user’s answers to states already encountered by the user match the expected answers.

Arguments

• answers (object) – (state_name, answer) pairs for each state the user has encoun-
tered and answered

tester.check.user.answers({
initial_state: 'coffee',
coffee_state: 'yes'

});

AppTester.check.user.lang(lang)
Checks that the user’s language matches the expected language code.

Arguments

• lang (string) – the language code (e.g. ‘sw’, ‘en’, ‘en_ZA’) or null to check that no
language code is set.

11.1. API 57

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

tester.check.user.lang('sw');
tester.check.user.lang(null);

AppTester.check.user.metadata(metadata)
Checks that the user’s metadata after a sandbox run deep equals the expected metadata.

Arguments

• metadata (object) – the expected metadata of the user

tester.check.user.metadata({foo: 'bar'});

AppTester.check.user.properties(obj)
Checks that the expected properties given in obj are equal to the corresponding properties of the user after a
sandbox run.

Arguments

• obj (object) – the properties to check the user against

tester.check.user.properties({
lang: 'en',
state: {name: 'coffee_state'},
answers: {initial_state: 'coffee'}

});

AppTester.check.user.state(name)
Checks that the name of the user’s state after a sandbox run equals the expected name.

Arguments

• name (string) – the expected name of the current state

tester.check.user.state('coffee_state');

AppTester.check.user.state(obj)
Checks that the user’s state after a sandbox run deep equals obj.

Arguments

• obj.name (string) – the expected name for the state

• obj.metadata (object) – the expected metadata for the state.

• obj.creator_opts (object) – the expected creator options for the state.

tester.check.user.state({
name: 'coffee_state',
metadata: {foo: 'bar'},
creator_opts: {baz: 'qux'}

});

AppTester.check.user.state(fn)
Passes the user’s state data after a sandbox run to the function fn, allowing custom assertions to be done on the
state.

Arguments

• fn (function) – function of the form func(state), where state is the current state
instance and this is the AppTester() instance.

tester.check.user.state(function(state) {
assert.equal(state.name, 'coffee_state');

})

58 Chapter 11. AppTester

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

AppTester.check.user.state.creator_opts(creator_opts)
Checks that the creator options of the interaction machine’s current state after a sandbox run deep equals the
expected options.

Arguments

• creator_opts (object) – the expected creator_opts of the current state

tester.check.user.state.creator_opts({foo: 'bar'});

AppTester.check.user.state.metadata(metadata)
Checks that the metadata of the interaction machine’s current state after a sandbox run deep equals the expected
metadata.

Arguments

• metadata (object) – the expected metadata of the current state

tester.check.user.state.metadata({foo: 'bar'});

11.2 Under the Hood

If need be, one can always add custom task types. AppTester’s setup, interaction and check tasks all extend the same
class, AppTesterTasks().

class AppTesterTaskSet()
Manages a set of AppTesterTasks(). Used by AppTester() to control all its task collections (setup,
interaction and check tasks) without needing to interact with each collection individually.

static add(name, tasks)
Adds a task collection to this set of task collections.

Arguments

• name (string) – the name to be used to identify this collection of tasks.

• tasks (AppTesterTasks) – the collection of tasks to be added.

static attach()
Attaches each of the collections’ task methods to their tester. See AppTesterTasks.attach().

static get(name)
Retrieves the task collection associated with the specified name.

Arguments

• name (string) – the name to be used to look up the collection of tasks.

static invoke(method_name[, args])
Invokes a method on each task collection in the set, returning the results as an array.

Arguments

• method_name (string) – the name of the method to invoke on each task collection.

• args (array) – the arguments to invoke the method with.

static length
The total number of currently scheduled tasks in this set.

static reset()
Resets all of its collections. See AppTesterTasks.reset().

11.2. Under the Hood 59

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static run()
Runs the set’s task collections’ tasks in the order the collections were added in.

static yoink()
Attaches the tester’s api, im and app to directly to each of its tasks. See
AppTesterTasks.yoink().

class AppTesterTasks(tester)
A collection of tasks to be run one after the other.

Arguments

• tester (AppTester) – the tester that this collection of tasks will be scheduled for.

static after()
Hook invoked after all of the scheduled tasks have been run. May return a promise.

static attach()
Attaches the task collection’s methods to the collection’s associated tester. Any method defined on the
testers self.methods attribute will be attached as a method on the tester.

The method attached to the tester is constructed to simply schedule the actual task method. For example,
if the task collection has a method self.methods.foo(), a corresponding method tester.foo()
will be constructed. When tester.foo() is called, a call to self.methods.foo() will be sched-
uled next time this task collection is run.

static before()
Hook invoked before any of the scheduled tasks are run. May return a promise.

static length
The number of currently scheduled tasks in this collection.

static reset()
Attaches the tester’s api, im and app to directly this collection of tasks.

static reset()
Clears the task collection’s currently scheduled tasks and stored data.

static run()
Runs the collections’s scheduled tasks in the order they were scheduled, then performs a reset. Returns a
promise which will be fulfilled once the scheduled tasks have run and the collection has reset itself.

static schedule(name, fn, args)
Schedules a task method to be invoked on the next AppTesterTasks.run() call.

Arguments

• name (string) – the name of the task method to be scheduled

• fn (function) – the actual task method

• args (array) – the args that the task method will be scheduled to invoke.

static validate(name[, args])
Optional validator invoked each time a task is scheduled.

Arguments

• name (string) – the name of the task method to be scheduled

• args (array) – the args that the task method will be scheduled to invoke.

AppTesterTasks.after.each()
Hook invoked after each scheduled task has been run. May return a promise.

60 Chapter 11. AppTester

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

AppTesterTasks.before.each()
Hook invoked before each scheduled task is run. May return a promise.

class TaskError(message)
Thrown when an error occurs while trying to schedule or run a task.

Arguments

• message (string) – the error message.

class TaskMethodError(message)
Thrown when an error occurs while trying to invoke a task method.

Arguments

• method_name (string) – the name of the task method associated to the error.

• message (string) – the error message.

11.2. Under the Hood 61

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

62 Chapter 11. AppTester

CHAPTER 12

DummyApi

12.1 API

class DummyApi(opts)
A dummy of the sandbox’s real api for use tests and demos.

Arguments

• opts.http – Options to pass to the api’s DummyHttpResource(). Optional.

• opts.kv – The data to initialise the kv store with. Options to pass to the api’s
DummyHttpResource().

• opts.config – Config data given to the api’s DummyConfigResource() to initialise
the sandbox config with.

static config
The api’s DummyConfigResource().

static contacts
The api’s DummyContactsResource().

static groups
The api’s DummyGroupsResource().

static http
The api’s DummyHttpResource().

static kv
The api’s DummyHttpResource().

static log
The api’s DummyLogResource().

static metrics
The api’s DummyMetricsResource().

static outbound
The api’s DummyOutboundResource().

class DummyLogResource(name)
Handles api requests to the log resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

63

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static critical
An array of the messages logged at the ’CRITICAL’ log level

static debug
An array of the messages logged at the ’DEBUG’ log level

static error
An array of the messages logged at the ’CRITICAL’ log level

static info
An array of the messages logged at the ’INFO’ log level

static store
An object mapping log levels to the messages logged at that level.

static warning
An array of the messages logged at the ’WARNING’ log level

class DummyConfigResource(name)
Handles api requests to the config resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

static app
A shortcut to DummyConfigResource.store.config (the app’s config).

static json
An object specifying which keys in store should be serialized to JSON when being retrieved using
’config.get’. The default for keys not listed is true.

static store
An object containing the sandbox’s config data. Properties do not need to be JSON-stringified, this is done
when the config is retrieved using a ’config.get’ api request.

class DummyHttpResource(name, opts)
Handles api requests to the http resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

• opts.default_encoding (string) – The encoding to use for encoding requests
and decoding responses. Possible values are ’json’ and ’none’. If a request’s
Content-Type header is set, the encoding is inferred using that instead.

static fixtures
The resource’s fixture set to use to send out responses to requests. See HttpFixtures().

static requests
A list of http requests that have been sent to the resource, where each is of type HttpRequest().

class HttpFixture(opts)
Encapsulates an expected http request and the responses that be sent back.

Arguments

• opts.request.url (string or RegExp()) – The request url. If a string is given, the
url may include params. If the params are included, these will be decoded and set as the
HttpRequest()‘s params.

• opts.request.method (string) – The request method. Defaults to ‘GET’.

• opts.request.data (object) – The request’s un-encoded body data. Optional.

64 Chapter 12. DummyApi

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• opts.request.body (object) – The request’s already encoded body data. Optional.

• opts.request.params (object or array) – An object of key-value pairs to ap-
pend to the URL as query parameters. Can be in any form accepted by node.js’s querystring
module

• opts.request.headers (object) – An object mapping each header name to an array
of header values.

• opts.response (object) – A single response to use for this fixture, for cases where
one request is sent out.

• opts.response.code (integer) – The response’s status code

• opts.response.data (object) – The responses’s decoded body data. Optional.

• opts.response.body (object) – The response’s un-decoded body data. Optional.

• opts.responses (array) – An array of response data objects to use one after the other
each time a new request is sent out.

• opts.repeatable (boolean) – Configures the fixture’s response to be reused for ev-
ery new request. Defaults to false.

• opts.default_encoding (string) – The encoding to use for encoding requests and
decoding responses. Possible values are ‘json’ and ‘none’. If the request’s ‘Content-Type’
header is set, the encoding is inferred using that instead.

Either opts.response or opts.responses can be specified, or neither, but not both. If no responses are
given, an ‘empty’ response with a status code of 200 is used.

static use()
Returns the fixture’s next unused HttpResponse().

class HttpFixtures(opts)
Manages a set of HttpFixture() instances.

Arguments

• opts.match (function) – A function of the form f(request, fixture),
where request is the request that needs a match, and fixture is the current
HttpFixture() being tested as a match. Should return true if the request and fixture
match or false if they do not match.

• opts.defaults (boolean) – Defaults to use for each added fixture.

• opts.default_encoding (string) – The encoding to use for encoding requests and
decoding responses. Possible values are ‘json’ and ‘none’. If a request’s ‘Content-Type’
header is set, the encoding is inferred using that instead.

static add(data)
Adds an http fixture to the fixture set from raw data.

Arguments

• data (object) – The properties of the fixture to be added. See HttpFixture().

Returns The HttpFixture() that was created.

static filter(request)
Finds the fixtures that match the given request.

Arguments

• request (HttpRequest) – The request to find a match for.

12.1. API 65

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

class DummyContactsResource(name)
Handles api requests to the contacts resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

static add(contact)
Adds an already created contact to the resource’s store.

Arguments

• contact (Contact) – The contact to add.

static add(attrs)
Adds an contact to the resource via a data object.

Arguments

• attrs (object) – The attributes to initialise a contact with.

static search_results
An object mapping expected search queries to an array of the matching keys.

static store
A list of the resource’s currently stored contacts.

class DummyGroupsResource(name)
Handles api requests to the groups resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

• contacts (DummyContactsResource) – The contacts resource associated to this
groups resource.

static add(group)
Adds an already created group to the resource’s store.

Arguments

• group (Group) – The group to add.

static add(attrs)
Adds an group to the resource via a data object.

Arguments

• attrs (object) – The attributes to initialise a group with.

static search_results
An object mapping expected search queries to an array of the matching keys.

static store
A list of the resource’s currently stored groups.

class DummyKvResource(name[, store])
Handles api requests to the kv resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

• store (object) – The data to initialise the store with.

66 Chapter 12. DummyApi

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static incr(key[, amount])
Increment the value of an integer key. The current value of the key must be an integer. If the key does not
exist, it is set to zero. Returns the result.

Arguments

• key (string) – The key corresponding to the value to increment

• amount (integer) – The amount to increment by. Defaults to 1.

static set_ttl(key[, seconds])
Set or remove the ttl (expiry time) of a key.

If seconds is null or undefined the key is set not to expire (and its ttl is removed).

Arguments

• key (string) – The key to set the ttl for.

• seconds (integer) – The number of seconds to set the ttl to. Defaults to null.

static store
An object mapping all the keys in the store to their corresponding values.

static ttl
An object mapping keys set to expire to their lifetime (in seconds).

class DummyMetricsResource(name)
Handles api requests to the metrics resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

static add(metric)
Records a fired metric.

Arguments

• data.store (string) – the name of the metric

• data.metric (string) – the name of the metric

• data.agg (string) – the name of the aggregation method

• data.value (number) – the value to store for the metric

static agg
The aggregation method for metrics with the name metric_name that have been fired to the store with the
name store_name.

static values
An array of the metric values for metrics with the name metric_name that have been fired to the store with
the name store_name.

class DummyOutboundResource(name)
Handles api requests to the outbound resource from DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests.

• config (DummyConfigResource) – A DummyConfigResource() to read config-
ured endpoints from.

static store
An array of the sent outbound message objects.

12.1. API 67

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

12.2 Under the Hood

class DummyResource(name)
A resource for handling api requests sent to a DummyApi().

Arguments

• name (string) – The name of the resource. Should match the name given in api requests
(for eg, name would be ’http’ for http.get api request).

static handle(cmd)
Handles an api request by delegating to the resource handler that corresponds to cmd.

Arguments

• cmd (object) – The api request command to be handled.

static handlers
An object holding the resource’s handlers. Each property name should be the name of the resource handler
used in api requests (for eg, ’get’ for ’http.get’), and each property value should be a function
which accepts a command and returns an api result. For eg:

self.handlers.foo = function(cmd) {
return {

success: true,
bar: 'baz'

};
};

class DummyResources()
Controls a DummyApi()‘s resources and delegates api requests to correspinding resource. *

static add(resource)
Adds a resource to the resource collection.

Arguments

• resource (DummyResource) – The resource to be added.

static attach(api)
Attaches the resource collection’s resources directly onto a DummyApi(). Simply a convenience to pro-
vide users with direct access to the resource.

Arguments

• api (DummyApi) – the api to attach to

static get(name)
Returns a resource by name

Arguments

• name (string) – The name of the resource

static handle(cmd)
Handles an api request by delegating to the corresponding resource.

Arguments

• cmd (object) – The api request command to be handled.

static has_resource_for(cmd)
Determines whether the resource collection has a corresponding resource for cmd.

68 Chapter 12. DummyApi

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

Arguments

• cmd (object) – The command to look for a resource for.

12.2. Under the Hood 69

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

70 Chapter 12. DummyApi

CHAPTER 13

Translation

The toolkit supports internationalization using gettext. Apps have an $ attribute available that they can use when they
would like to internationalize their text. Here is a simple example:

var SomeApp = App.extend(function(self) {
App.call(self);
var $ = self.$;

self.states.add('states:start', function(name) {
return new FreeText(name, {

question: $("Hello! Say something!"),
next: 'states:end'

});
});

self.states.add('states:end', function(name) {
return new EndState(name, {

text: $.dgettext('messages', "That's nice, bye!")
});

});
});

The gettext methods are well documented in the python docs.

13.1 Under the hood

class LazyText(method, args)
Holds information about text to be translated at a later stage.

Arguments

• method (string) – The gettext method to use for translation

• args (array or arguments) – The args given to the gettext method to perform the
translation

static apply_translation(jed)
Accepts a Jed() instance and uses it to translate the text.

Arguments

• jed (Jed) – The jed instance to translate with

71

http://www.gnu.org/software/gettext/
http://docs.python.org/2/library/gettext.html

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

static context(ctx)
Sets the context to use in translations.

Arguments

• ctx (object) – An object containing the context to be used.

$('Hello {{ person }}!').context({person: 'Guy'});

class LazyTranslator()
Constructs LazyText() instances holding information for translation at a later stage.

Supports the following gettext methods:

• gettext = fn(key)

• dgettext = fn(domain, key)

• ngettext = fn(singular_key, plural_key, value)

• dngettext = fn(domain, singular_ley, plural_key, value)

• pgettext = fn(context, key)

• dpgettext = fn(domain, context, key)

• npgettext = fn(context, singular_key, plural_key, value)

• dnpgettext = fn(domain, context, singular_key, plural_key, value)

For information on how these methods should be used, see: http://slexaxton.github.io/Jed/

static support(method)
Tells the the translator to support calls to method.

Arguments

• method (string) – The name of the method to support

class Translator(jed)
Constructs functions of the form f(text), where text is a string or a LazyText(). If a string is provided,
the function acts as a no-op. If a lazy translation is given, the function applies the translation using the translator’s
jed instance.

Arguments

• jed (Jed) – A jed instance or options to initialise such a jed instance to translate with.

static jed
Direct access to the translator’s Jed() instance.

apply_translation(jed, text)
Accepts a jed instance and (possibly lazy translation) text and returns the translation result. If a string is pro-
vided, the function acts as a no-op. If a lazy translation is given, the function applies the translation using the
jed given in the constructor.

Arguments

• jed (Jed) – The jed instance to translate with

• text (string or LazyText()) – Either a string or an object constructed by one of
LazyTranslator()‘s translation methods.

72 Chapter 13. Translation

http://slexaxton.github.io/Jed/

CHAPTER 14

Sending Messages

OutboundHelper(im)
Provides helpers for sending messages.

Arguments

• im (InteractionMachine) – the interaction machine associated to the helper.

static delivery_class
The fallback delivery class to use when sending to a Contact().

static send(opts)
Sends a message to an address or contact.

Arguments

• opts.to (string or Contact().) – The address or contact to send to.

• opts.endpoint (string) – The endpoint to send to over (for e.g. ’sms’). Needs to
be one of the endpoints configured in the app’s config.

• opts.content (string or LazyText()) – The content to be sent.

• opts.delivery_class (string) – The delivery class to send over for the
contact (for e.g. if ’ussd’ is given, the helper will send to the contact’s
the contact’s ’msisdn’ address). If not given, uses the delivery class config-
ured for endpoint in OutboundHelper.endpoints, finally falling back to
OutboundHelper.delivery_class. Irrelevant when opts.to is a string. See
ContactStore.get() for a list of the supported delivery classes.

• opts.lang (string) – a letter language code (e.g. sw, en) to translate the content. If
not given, the content will be translated to the user’s current language.

static send_to_user(endpoint)
Sends a message to the current user.

Arguments

• opts.endpoint (string) – The endpoint to send to over (for e.g. ’sms’). Needs to
be one of the endpoints configured in the app’s config.

• opts.content (string) – The content to be sent.

• opts.lang (string) – a letter language code (e.g. sw, en) to translate the content. If
not given, the content will be translated to the user’s current language.

73

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

74 Chapter 14. Sending Messages

CHAPTER 15

Utils

class BaseError()
An extendable error class that inherits from Error().

Example usage:

var MyError = BaseError.extend(function(self, message) {
self.name = "MyError";
self.message = message;

});

BaseError() copies .extend from Extendable() rather than inheriting it because it inherits from
Error() already.

class DeprecationError()
Thrown when deprecated functionality is used.

class Extendable()
A base class for extendable classes.

class Extendable.extend(Child)
Create a sub-class.

Arguments

• Child (Class) – The constructor for the child class.

Example usage:

var MyClass = Extendable.extend(function(self, name) {
self.my_name = name;

});

var OtherClass = MyClass.extend(function(self, other) {
MyClass.call("custom_name");
self.other_var = other;

});

basic_auth(username, password)
Return an HTTP Basic authentication header value for the given username and password.

Arguments

• username (string) – The username to authenticate as.

• password (string) – The password to authenticate with.

75

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

exists(v)
Return true if v is defined and not null, and false otherwise.

Arguments

• v (Object) – The value to check.

format_addr(addr, type)
Format an address as a standardized string.

This function delegates to the formatter format_addr[type] or returns the address unchanged if there is
no custom formatter.

Arguments

• addr (string) – The address to format.

• type (string) – The address type for the address.

format_addr.gtalk_id(addr)
Canonicalize a Gtalk address by stripping the device-specifier, if any.

Arguments

• addr (string) – The Gtalk address to format.

format_addr.msisdn(addr)
Canonicalize an MSISDN by adding a + prefix if one is not present.

Arguments

• addr (string) – The MSISDN to format.

functor(obj)
Coerce obj to a function.

If obj is a function, return the function. Otherwise return a constant function that returns obj when called.

Arguments

• obj (Object) – The object to coerce.

infer_addr_type(delivery_class)
Return the address type for the given delivery class.

A delivery class is type of system that messages can be sent or received over. Common values are sms,
ussd, gtalk, twitter, mxit and wechat.

An address type is a type of address used to identify a user and corresponds to a field on a Contact()
object. Common values are msisdn, gtalk_id and twitter_handler, mxit_id and wechat_id.

If the delivery_class isn’t know, the delivery_class itself is returned as the address_type.

Arguments

• delivery_class (string) – The delivery class to look up.

The mapping of delivery classes to address types is a low-level
implementation detail that is subject to change. Use higher-level
alternatives where possible.

inherit(Parent, Child)
Inherit the parent’s prototype and mark the child as extending the parent.

Arguments

• Parent (Class) – The parent class to inherit and extend from.

76 Chapter 15. Utils

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• Child (Class) – The child class that inherits and extends.

is_integer(v)
Return true if v is of type number and has no fractional part.

Arguments

• v (Object) – The value to check.

maybe_call(obj, that, args)
Coerce a function to its result.

If obj is a function, call it with the given arguments and return the result. Otherwise return obj.

Arguments

• obj (Object) – The function to call or result to return.

• that (Object) – The value of this to bind to the function.

• args (Array) – Arguments to call the function with.

normalize_msisdn(number, country_code)
Normalizes an MSISDN number.

This function will normalize an MSISDN number by removing any invalid characters and adding the country
code. It will return null if the given number cannot be normalized.

This function is based on the MSISDN normalize function found within the vumi utils.

Arguments

• number (string) – The number to normalize.

• country_code (string) – (optional) The country code for the number.

starts_with(haystack, needle)
Return true if haystack starts with needle and false otherwise.

Arguments

• haystack (string) – The string to search within.

• needle (string) – The string to look for.

If either parameter is false-like, it is treated as the empty string.

uuid()
Return a UUID (version 4).

vumi_utc(date)
Format a date in Vumi’s date format.

Arguments

• date (obj) – A value moment can interpret as a UTC date.

77

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

78 Chapter 15. Utils

CHAPTER 16

Test Utilities

fail()
Raises an AssertionError() with "Expected test to fail" as the error message.

make_im(opts)
Constructs an InteractionMachine(). Useful for testing things that a App() uses, for e.g. an http api
helper for a particular app. All options are optional.

Arguments

• opts.app (App) – The app to be given to the interaction machine. If not given, a new app
is created with a start state of ‘start’.

• opts.api (object or DummyApi) – If an options object is given, a new
DummyApi() is created using those options. Sensible defaults are provided for ’config’
and ’kv’ if those options are not given.

• opts.msg (object) – The message to setup the InteractionMachine() with.
Uses sensible defaults if not given.

• opts.setup (boolean) – Whether InteractionMachine.setup() should be in-
voked. Defaults to true.

requester(api)
Returns a promise-based function that makes requests to the given api.

Arguments

• api (DummyApi) – The api to make requests to.

79

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

80 Chapter 16. Test Utilities

CHAPTER 17

Javascript Sandbox Tutorial

This is a javascript sandbox tutorial for writing standalone Javascript sandbox applications (that connect to Junebug)
too.

17.1 What is the sandbox?

A sandbox is an isolated execution environment, but its used in production, not testing, and its role is to provide
access to carefully selected external resources and capabilities (e.g. logging, web requests, a key-value store, sending
messages).

17.2 Introduction to an example we’re going to use for this tutorial

In this tutorial we’re going to write a sandbox application for CTA train tracker which returns a total number of
in-service trains for one or more specified “L” routes.

17.3 Outcomes of the tutorial

By the end of this tutorial, you will be able to:

• Understand the structure of a sandbox application repository

• Write a sandbox application

• Write tests

• Know how to make an HTTP request from a sandbox application

• Deploy your application to Vumi Go

17.4 Other documentation

17.4.1 Sandbox skeleton

In this section, We’ll learn how to use the sandbox skeleton. Use this skeleton as a starting point for writing a sandbox
application.

81

http://www.transitchicago.com/traintracker/default.aspx
https://en.wikipedia.org/wiki/Chicago_%22L%22
https://github.com/praekelt/go-jsbox-skeleton

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

Requirements:

You will need the following things properly installed on your computer.

• nodejs

• npm

• gruntjs

Getting Started

Find the sandbox skeleton repo.

Clone the repo:

$ git clone https://github.com/praekelt/go-jsbox-skeleton
$ cd go-jsbox-skeleton

Install requirements:

$ npm install

Run tests:

$ npm test

Sandbox skeleton directory structure

After you’ve cloned the repo and installed all the requirements, the sandbox skeleton directory should look like this:

Now let’s take a look at the folders and files inside our go-jsbox-skeleton app directory.

src: Is the folder where the project’s source files are stored or located.

• app.js: The majority of the go-jsbox-skeleton app code happens in this file.

82 Chapter 17. Javascript Sandbox Tutorial

https://nodejs.org/en/
https://docs.npmjs.com/
http://gruntjs.com/
https://github.com/praekelt/go-jsbox-skeleton

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

• index.js: / init.js: There’s no need to worry about this files they contain boilerplate code.

test:

• app.test.js: This file contains go-jsbox-skeleton app test configuration.

• fixture.js: This file contains a list of fixtures. If you look at the code inside the file you’ll notice that it
pretends to be a server if the app makes an http request. it basically telling what an http should expect and
respond to those requests.

• setup.js: Again, this file contains a boilerplate code. There’s nothing to worry about.

travis.yml: Is the configuration file for Travis-CI. Runs all go-jsbox-skeleton app tests everytime we commit or push
our code to GitHub. Read more about Travis-CI here.

go-app.js: This is a generated file. It a compiled version of go-jsbox-skeleton app. It auto generated when you run
npm test.

Warning: Don’t edit this file (go-app.js). Edit src/app.js instead!

gruntfile.js: This file contains grunt configuration such as grunt plugins (grunt-contrib-jshint,
grunt-mocha-test, grunt-contrib-concat, grunt-contrib-watch) and other grunt packages that
we need for our project(go-jsbox-skeleton).

package.json: Contains a list of npm dependencies to install for go-jsbox-skeleton app by running npm install.

17.4.2 Deploying to Vumi Go

In this part of the tutorial, we will learn how to deploy our app to Vumi Go using our sandbox skeleton app example.

1. Set up a Vumi Go account

You will need a Vumi Go account to deploy our sandbox skeleton app. If you already have a Vumi Go account please
move on to Step 2.

• To set up a Vumi Go account please contact the vumi development team via email by joining the the vumi-
dev@googlegroups.com mailing list or on irc in #vumi on the Freenode IRC network.

2. Sign in to Vumi Go

To sign in to Vumi Go account, do the following:

• Go to https://go.vumi.org/accounts/login/?next=/conversations/

• Enter your email address and password

• Click Sign in

After you have signed in, your dashboard panel should look like this:

3. Create a new channel

To create a new channel follow the following steps:

• Click new channel

• Select a destination and a channel as is shown in the picture below. Click save.

By clicking save, you will be taken to the page shown below where you will see your new generated USSD code.
Click dashboard.

Warning: Don’t click the release button!

17.4. Other documentation 83

https://en.wikipedia.org/wiki/Boilerplate_code
https://en.wikipedia.org/wiki/Boilerplate_code
https://travis-ci.org/
https://go.vumi.org
https://groups.google.com/forum/?fromgroups#!forum/vumi-dev
https://groups.google.com/forum/?fromgroups#!forum/vumi-dev
https://webchat.freenode.net/?channels=#vumi
https://go.vumi.org/accounts/login/?next=/conversations/

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

84 Chapter 17. Javascript Sandbox Tutorial

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

4. Create new conversation

To create a new conversation the steps are as follows:

• Click new conversation

• Enter a new conversation name and conversation description and then select a kind of conversation of your
choice. Please see the picture below. Click save.

• Now copy the github raw code url for go-app.js and paste it in source url field. Click update from url. After
you load the URL it’ll show up in the editor. Click save.

After clicking save. You have successfully created a new conversation. Click dashboard.

5. Campaign routing

• Click campaign routing

• Under Channels you will see the channel you created, with a red “default” label. Click and drag on this label to
join it with the similar label on the conversation you just created under Conversations. This will allow inbound
messages on that channel to reach your conversation. Drag another arrow, this time from the conversation to the
channel, this will allow replies from your conversation to reach the channel and be sent back to the user. Click
save

17.4. Other documentation 85

https://raw.githubusercontent.com/praekelt/go-jsbox-skeleton/develop/go-app.js

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

86 Chapter 17. Javascript Sandbox Tutorial

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

17.4. Other documentation 87

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

Fig. 17.1: Congratulations, you have successfully deployed your first app to Vumi Go! You can test it by dailing:
*120*8864*163#

17.4.3 Creating states

States are the building blocks of sandbox applications. In this section we will learn how to create states using CTA
train tracker sandbox application.

Overview of States

The states that we used for this sandbox appication are:

• StartState

• ChoiceState

• MenuState

• EndState

StartState

A state when the user starts a session on the USSD. The following is an example of a StartState:

self.states.add('states:start', function(name) {
return new MenuState(name, {

question: 'Welcome to CTA train tracker.Pick a route:',

choices: [
new Choice('states:red', 'Red Line'),
new Choice('states:blue', 'Blue Line'),
new Choice('states:brown', 'Brown Line'),
new Choice('states:green', 'Green Line'),
new Choice('states:orange', 'Orange Line'),
new Choice('states:purple', 'Purple Line'),
new Choice('states:pink', 'Pink Line'),
new Choice('states:exit', 'Exit')]

});
});

88 Chapter 17. Javascript Sandbox Tutorial

https://github.com/praekelt/go-jsbox-http-request-example
https://github.com/praekelt/go-jsbox-http-request-example

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

The example above also uses ChoiceState and MenuState which displays a list of numbered choices and allows a
user to respond by selecting one of the choices. E.g Red line, Blue line, Brown line etc.

EndState

This displays text and then terminates a session when the user is on the exit state. The following is an example of a
EndState:

self.states.add('states:exit', function(name, opts) {
var result = _.map(opts.echo.ctatt.route, function(route){

return 'There are ' + route.train.length + ' trains on the ' + route['@name'] + ' line.';
});
return new EndState(name, {

text: [
'Thanks for using CTA tran tracker.',
result.join(';')

].join(' '),
next: 'states:start'

});
});

Read more about States here.

17.4.4 Updating tests

The example shown below is a test example when the user starts a session and asked to pick a route.

describe("when the user starts a session", function() {
it("should ask them to pick a route", function() {

return tester
.start()
.check.interaction({

state: 'states:start',
reply: [

'Welcome to CTA train tracker.Pick a route:',
'1. Red Line',
'2. Blue Line',
'3. Brown Line',
'4. Green Line',
'5. Orange Line',
'6. Purple Line',
'7. Pink Line',
'8. Exit'

].join('\n')
})
.run();

});
});

In the following example we want to check that the response was given to
http://lapi.transitchicago.com/api/1.0/ttpositions.aspx?key=33305d8dcece4aa58c651c740f88d1e2&rt=red&outputType=JSON
and check the the request’s data equals the content given by the user.

describe("when the user is asked to pick a route e.g red line", function() {
it("should select red line", function() {

return tester
.setup.user.state('states:red')

17.4. Other documentation 89

http://vumi-jssandbox-toolkit.readthedocs.io/en/latest/states/index.html
http://lapi.transitchicago.com/api/1.0/ttpositions.aspx?key=33305d8dcece4aa58c651c740f88d1e2&rt=red&outputType=JSON

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

.input('1')

.check(function(api) {
var req = api.http.requests[0];
assert.deepEqual(req.params, {rt: 'red', key: '33305d8dcece4aa58c651c740f88d1e2', outputType: 'JSON'});

})
.run();

});

it("should tell them the result", function() {
return tester

.setup.user.state('states:start')

.input('1')

.check.interaction({
state: 'states:exit',
reply: [

"Thanks for using CTA tran tracker.",
"There are 2 trains on the red line."

].join(' ')
})
.check.reply.ends_session()
.run();

});
});

To run the tests type: npm test

Read more about Test Utilities here.

17.4.5 Add an HTTP request

In this section we will show you how to add an http request to your sandbox application.

As an example, we are going to preform a GET request to CTA train tracker. which returns a total number of in-service
trains for Red line route.

self.states.add('states:red', function(name) {
return self

.http.get(
'http://lapi.transitchicago.com/api/1.0/ttpositions.aspx?', {
params: {rt: 'red', key: '33305d8dcece4aa58c651c740f88d1e2', outputType: 'JSON'}

})
.then(function(resp) {

return self.states.create('states:exit', { echo: resp.data});
});

});

The HTTP request is made to that URL, with the parameters key, train route and the output type as Json. Once you’ve
made the request to that URL, The .then() function will create the exit state and returns the results.

Read more about HTTP API here.

See also Vumi Go’s documentation.

90 Chapter 17. Javascript Sandbox Tutorial

http://vumi-jssandbox-toolkit.readthedocs.io/en/master/test_utils.html
http://lapi.transitchicago.com/api/1.0/ttpositions.aspx?key=33305d8dcece4aa58c651c740f88d1e2&rt=red&outputType=JSON
http://vumi-jssandbox-toolkit.readthedocs.io/en/latest/http_api.html
http://vumi-go.readthedocs.org/

CHAPTER 18

Example Applications

To get you started, here are some example applications that may be useful as an example or reference.

18.1 Basic example

A simple app with a ChoiceState() and two EndState()s. Take a look to find out how to ask a user if they
would like tea or coffee.

18.2 Contacts example

Shows the basics for getting and saving contacts, and how to test contacts-based apps.

18.3 Http example

Shows the basics for making http requests and using the responses.

91

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

92 Chapter 18. Example Applications

CHAPTER 19

Indices and tables

• genindex

• modindex

• search

93

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

94 Chapter 19. Indices and tables

Index

A
ApiError() (class), 3
App() (class), 11
App.$ (None attribute), 11
AppError() (class), 12
AppErrorEvent() (class), 12
AppEvent() (class), 12
apply_translation() (built-in function), 72
AppStateError() (class), 12
AppStates() (class), 12
AppStates.add.creator() (AppStates.add method), 13
AppStates.add.state() (AppStates.add method), 13
AppStates.creators.__error__() (AppStates.creators

method), 13
AppStates.creators.__start__() (AppStates.creators

method), 13
AppTester() (class), 49
AppTester.check() (AppTester method), 54
AppTester.check.ends_session() (AppTester.check

method), 55
AppTester.check.reply() (AppTester.check method), 55,

56
AppTester.check.reply.char_limit()

(AppTester.check.reply method), 56
AppTester.check.reply.content() (AppTester.check.reply

method), 56
AppTester.check.reply.properties()

(AppTester.check.reply method), 56
AppTester.check.user() (AppTester.check method), 57
AppTester.check.user.answer() (AppTester.check.user

method), 57
AppTester.check.user.answers() (AppTester.check.user

method), 57
AppTester.check.user.lang() (AppTester.check.user

method), 57
AppTester.check.user.metadata() (AppTester.check.user

method), 58
AppTester.check.user.properties() (AppTester.check.user

method), 58

AppTester.check.user.state() (AppTester.check.user
method), 58

AppTester.check.user.state.creator_opts()
(AppTester.check.user.state method), 58

AppTester.check.user.state.metadata()
(AppTester.check.user.state method), 59

AppTester.input() (AppTester method), 53
AppTester.input.content() (AppTester.input method), 53
AppTester.input.session_event() (AppTester.input

method), 54
AppTester.inputs() (AppTester method), 54
AppTester.setup() (AppTester method), 49
AppTester.setup.char_limit() (AppTester.setup method),

49
AppTester.setup.config() (AppTester.setup method), 50
AppTester.setup.endpoint() (AppTester.setup method), 50
AppTester.setup.kv() (AppTester.setup method), 50
AppTester.setup.user() (AppTester.setup method), 50
AppTester.setup.user.addr() (AppTester.setup.user

method), 51
AppTester.setup.user.answer() (AppTester.setup.user

method), 51
AppTester.setup.user.answers() (AppTester.setup.user

method), 51
AppTester.setup.user.lang() (AppTester.setup.user

method), 51
AppTester.setup.user.metadata() (AppTester.setup.user

method), 51
AppTester.setup.user.state() (AppTester.setup.user

method), 52
AppTester.setup.user.state.creator_opts()

(AppTester.setup.user.state method), 52
AppTester.setup.user.state.metadata()

(AppTester.setup.user.state method), 52
AppTester.start() (AppTester method), 54
AppTesterTasks() (class), 60
AppTesterTasks.after.each() (AppTesterTasks.after

method), 60
AppTesterTasks.before.each() (AppTesterTasks.before

method), 60
AppTesterTasks.length (None attribute), 60

95

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

AppTesterTaskSet() (class), 59
AppTesterTaskSet.length (None attribute), 59

B
BaseError() (class), 75
basic_auth() (built-in function), 75
BookletState() (class), 22

C
Choice() (class), 20
ChoiceState() (class), 20
Contact() (class), 35
Contact.do.reset() (Contact.do method), 35
Contact.do.validate() (Contact.do method), 35
ContactStore() (built-in function), 35
created (None attribute), 29

D
delivery_class (None attribute), 73
DeprecationError() (class), 75
DummyApi() (class), 63
DummyApi.config (None attribute), 63
DummyApi.contacts (None attribute), 63
DummyApi.groups (None attribute), 63
DummyApi.http (None attribute), 63
DummyApi.kv (None attribute), 63
DummyApi.log (None attribute), 63
DummyApi.metrics (None attribute), 63
DummyApi.outbound (None attribute), 63
DummyConfigResource() (class), 64
DummyConfigResource.app (None attribute), 64
DummyConfigResource.json (None attribute), 64
DummyConfigResource.store (None attribute), 64
DummyContactsResource() (class), 65
DummyContactsResource.search_results (None at-

tribute), 66
DummyContactsResource.store (None attribute), 66
DummyGroupsResource() (class), 66
DummyGroupsResource.search_results (None attribute),

66
DummyGroupsResource.store (None attribute), 66
DummyHttpResource() (class), 64
DummyHttpResource.fixtures (None attribute), 64
DummyHttpResource.requests (None attribute), 64
DummyKvResource() (class), 66
DummyKvResource.store (None attribute), 67
DummyKvResource.ttl (None attribute), 67
DummyLogResource() (class), 63
DummyLogResource.critical (None attribute), 63
DummyLogResource.debug (None attribute), 64
DummyLogResource.error (None attribute), 64
DummyLogResource.info (None attribute), 64
DummyLogResource.store (None attribute), 64
DummyLogResource.warning (None attribute), 64

DummyMetricsResource() (class), 67
DummyMetricsResource.agg (None attribute), 67
DummyMetricsResource.values (None attribute), 67
DummyOutboundResource() (class), 67
DummyOutboundResource.store (None attribute), 67
DummyResource() (class), 68
DummyResource.handlers (None attribute), 68
DummyResources() (class), 68

E
EndState() (class), 24
Event() (class), 47
Eventable.emit() (Eventable method), 47
Eventable.once.resolved() (Eventable.once method), 47
Eventable.teardown_listeners() (Eventable method), 47
exists() (built-in function), 75
Extendable() (class), 75
Extendable.extend() (class), 75

F
fail() (built-in function), 79
format_addr() (built-in function), 76
format_addr.gtalk_id() (format_addr method), 76
format_addr.msisdn() (format_addr method), 76
FreeText() (class), 24
functor() (built-in function), 76

G
Group() (class), 37
Group.do.reset() (Group.do method), 38
Group.do.validate() (Group.do method), 38
GroupStore() (built-in function), 38

H
HttpApi() (class), 41
HttpApiError() (class), 43
HttpFixture() (class), 64
HttpFixtures() (class), 65
HttpRequest() (class), 43
HttpRequestError() (class), 43
HttpResponse() (class), 44
HttpResponseError() (class), 44

I
IMConfig() (class), 33
IMConfigError() (class), 33
IMErrorEvent() (class), 3
IMEvent() (class), 3
IMShutdownEvent() (class), 3
InboundEventEvent() (class), 3
InboundMessageEvent() (class), 3
infer_addr_type() (built-in function), 76
inherit() (built-in function), 76

96 Index

Vumi Javascript Sandbox Toolkit Documentation, Release 0.2.18

interact() (built-in function), 8
InteractionMachine() (class), 4
InteractionMachine.api (None attribute), 4
InteractionMachine.app (None attribute), 4
InteractionMachine.config (None attribute), 4
InteractionMachine.contacts (None attribute), 4
InteractionMachine.groups (None attribute), 5
InteractionMachine.handle_message.close() (Interaction-

Machine.handle_message method), 7
InteractionMachine.handle_message.new() (Interaction-

Machine.handle_message method), 7
InteractionMachine.handle_message.resume() (Inter-

actionMachine.handle_message method),
7

InteractionMachine.log (None attribute), 5
InteractionMachine.metrics (None attribute), 5
InteractionMachine.msg (None attribute), 5
InteractionMachine.next_state (None attribute), 5
InteractionMachine.outbound (None attribute), 6
InteractionMachine.sandbox_config (None attribute), 6
InteractionMachine.state (None attribute), 7
InteractionMachine.user (None attribute), 7
is_integer() (built-in function), 77

J
JsonApi() (class), 44

L
LanguageChoice() (class), 21
LazyText() (class), 71
LazyTranslator() (class), 72
Logger() (class), 27

M
make_im() (built-in function), 79
maybe_call() (built-in function), 77
MenuState() (class), 22
MetricStore() (class), 45
MetricStore.fire.avg() (MetricStore.fire method), 45
MetricStore.fire.inc() (MetricStore.fire method), 45
MetricStore.fire.last() (MetricStore.fire method), 45
MetricStore.fire.max() (MetricStore.fire method), 46
MetricStore.fire.min() (MetricStore.fire method), 46
MetricStore.fire.sum() (MetricStore.fire method), 46

N
normalize_msisdn() (built-in function), 77

O
OutboundHelper() (built-in function), 73

P
PaginatedChoiceState() (class), 22

PaginatedState() (class), 23

R
ReplyEvent() (class), 8
requester() (built-in function), 79

S
SandboxConfig() (class), 33
SessionCloseEvent() (class), 8
SessionNewEvent() (class), 8
SessionResumeEvent() (class), 8
SetupEvent() (class), 47
starts_with() (built-in function), 77
State() (class), 17
State.emit.input() (State.emit method), 18
State.translators.before_display() (State.translators

method), 18
State.translators.before_input() (State.translators

method), 18
State:set_next_state() (built-in function), 18
StateEnterEvent() (class), 19
StateError() (class), 19
StateEvent() (class), 19
StateInputEvent() (class), 19
StateInvalidError() (class), 19
StateResumeEvent() (class), 20
StateShowEvent() (class), 20

T
TaskError() (class), 61
TaskMethodError() (class), 61
TeardownEvent() (class), 48
Translator() (class), 72
Translator.jed (None attribute), 72

U
UnknownCommandEvent() (class), 8
User() (built-in function), 29
UserEvent() (class), 31
UserLoadEvent() (class), 31
UserNewEvent() (class), 31, 32
UserSaveEvent() (class), 32
uuid() (built-in function), 77

V
vumi_utc() (built-in function), 77

Index 97

	Interaction Machine
	App
	States
	Logging
	User
	Config
	Contacts
	HTTP API
	Metrics
	Events
	AppTester
	DummyApi
	Translation
	Sending Messages
	Utils
	Test Utilities
	Javascript Sandbox Tutorial
	Example Applications
	Indices and tables

