Vumi Javascript Sandbox Toolkit

Documentation
Release 0.1.23

Praekelt Foundation

March 04, 2014

Contents

1 Interaction Machine

4.1 JSBoxSkeleton.
42 Contacts Example
43 GroupsExample 0.

2 States
3 HTTP API
4 Example Applications
4.4 Key Value Store Example

45 Booklets!
4.6 SMSkeywords
47 Events& Metricso
48 Google MapsMashup
49 Ushahidi

5 Indices and tables

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

This is the sandbox toolkit for making writing Javascript applications for Vumi Go’s Javascript sandbox.

Contents 1

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

2 Contents

CHAPTER 1

Interaction Machine

class ConfigReadEvent ()
IMEvent () fired immediately after sandbox configuration is read.

Arguments
e im (InteractionMachine) — the interaction machine firing the event.
* config (object) — the config object.
The event type is config_read.

class IMEvent ()
An event fired by the interaction machine.

Arguments
* ev (string) — the event type.
* im (InteractionMachine) — the interaction machine firing the event.
* data (object) — additional event data.

class InboundEventEvent ()
IMEvent () fired when an message status event is received. Typically this is either an acknowledgement or a
delivery report for an outbound message that was sent from the sandbox application.

Arguments
e im (InteractionMachine) — the interaction machine firing the event.
* event (object) — the event message received.
The event type is inbound_event.
class InteractionMachine ()
Arguments

* api (SandboxAPI) — a sandbox API providing access to external resources and inbound
messages.

* state_creator (StateCreator) — a collection of states defining an application.

A controller that handles inbound messages and fires events and handles state transitions in response to those
messages. In addition it serves as a bridge between a StateCreator () (i.e. set of states defining an appli-
cation) and resources provided by the sandbox API.

static api
A reference to the sandbox API.

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

static api_request (cmd_name, cmd)
Raw request to the sandbox APL

Arguments
e cmd_name (string) — name of the API request to make.
* cmd (object) — API request data.
Returns a promise that fires with the response to the API request.

static attach ()
Register the interaction machine’s on_unknown_command, on_inbound_message
on_inbound_event with the sandbox API and set the interaction machine itself as api . im.

static config

The value of the config key retrieved from the sandbox config resource. Avail-

able once InteractionMachine.setup_config() has been called
InteractionMachine.on_inbound_message ().

static current_state

The current State () object. Updated whenever a new state is entered via a called to

InteractionMachine.switch_state ().

static done ()
Terminate this sandbox instance.

static event (event)
Fire an event from the interaction machine to its state creator.

Arguments
e event (/MEvent) — the event to fire.

static fetch_config_wvalue (key, json, done)
Retrieve a value from the sandbox application’s Vumi Go config.

Arguments
* key (string) — name of the configuration item to retrieve.

e json (boolean) — whether to parse the returned value using JSON.parse. Defaults to
false.

* done (function) — function £ (value) to call once the value has been returned by the
config resource.

static fetch_translation (lang, done)
Retrieve a jed instance containing translations for the given language.

Arguments
* lang (string) — two letter language code (e.g. sw, en).

* done (function) — function f (jed) to call with the jed instance containing the transla-
tions.

Translations are retrieve from the sandbox configuration resource by looking up keys named

translation.<language—-code>.

static get_msg ()

Returns the inbound user msg object currently being processed by the interaction machine. Returns null

if no message is being processed.

4 Chapter 1. Interaction Machine

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

static get_user_answer (state_name)
Return the answer stored for a particular state.

Arguments
 state_name (string) — name of the state to retrieve the answer for.
Returns the value stored or nul1l if no value is found.

static 118n
A jed gettext object for the current user. Updated whenever a new state is entered via a called to
InteractionMachine.switch_state ().

static 1i18n_lang
Two-letter language code for the user’s language. Updated whenever a new state is entered via a called to
InteractionMachine.switch_state().

static load_user (from_addr)
Load a user’s current state from the key-value data store resource.

Arguments
¢ from_addr (string) — The address (e.g. MSISN) of the user.
Returns a promise that fires once the user data has been loaded.

static 1og (message)
Log a message to the sandbox logging resource at the info level.

Arguments
* message (string) — the log message.
Returns a promise that fires once the log message as been acknowledged by the logging resource.

static metrics
A defaultMetricStore () instance. Available once InteractionMachine.setup_metrics ()
has been called by InteractionMachine.on_inbound_message ().

static msg
The message command currently being processed. Available as soon as
InteractionMachine.on_inbound_message () is called.

static on_inbound_event (cmd)
Handle a message event (e.g. an acknowledgement or delivery report).

Arguments
* cmd (object) — The API request cmd containing the message event.
Fires an InboundEventEvent () containing the event.
This method terminates the sandbox once the event has been processed.

static on_inbound_message (cmd)
Handle an inbound user message triggering state transitions and events as necessary.

Arguments
* cmd (object) — The API request cmd containing the inbound user message.
The steps performed by this method are roughly:
eInteractionMachine.setup_config()

eInteractionMachine.setup_metrics ()

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

eInteractionMachine.load_user ()
*Switch to the user’s previous state using InteractionMachine.switch_state ().

eFire a SessionCloseEvent (), SessionNewEvent () or SessionResumeEvent () event
as appropriate.

eCall the current state’s input_event method for resumed sessions of the current state’s
new_session_event method for new sessions.

*Send a reply from the current state if the session was not closed.
Afterwards this method terminates the sandbox.

static on_unknown_command (cmd)

Called by the sandbox API when a command without a handler is received. Logs an error and terminates
the sandbox instance.

Arguments
* cmd (object) — The API request that no command handler was found for.
The handlers currently implemented are:
eInteractionMachine.on_inbound_message ()
eInteractionMachine.on_inbound_event ()

static refresh_il8n ()

Re-fetches the appropriate language translations if the user’s language setting has changed since trans-
lations were last loaded. Sets self.il8n to a new jed instance and sets self.il8n_lang to
self.user.lang.

Returns a promise that fires once the translations have been refreshed.

static reply (msg, save_user)
Send a response from the current state to the user.

Arguments
* msg (object) — the inbound message being replied to.
e save_user (boolean) — whether to save the user state.
Returns a promise which fires once the response has been sent and the user state successfully stored.

static set_user answer (state_name, answer)
Sets the answer for the given state.

Arguments
 state_name (string) — name of the state the answer is for.
* value (object) — value of the answer (usually a string).
This is called by State () objects when they determine that the user has submitted an answer.
static set_user_lang (lang)
Arguments

* lang (string) — The two-letter code of the language the user has selected. E.g. en, sw.

static set_user state (state_name)
Sets the stored value of the user’s current state.

Arguments

Chapter 1. Interaction Machine

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

 state_name (string) — name of the state the user is now in.

This only sets the stored value of the user’s state. Actual state changes are handled by switch_state ()
which calls this method.

static setup_config()
Retrieves the sandbox config and stores it on the interaction machine as self.config for later use.
Fires a ConfigReadEvent () so that state creators may perform application specific setup.

static setup_metrics ()
Assign a MetricStore () instance to self.metrics. The store name is read from
self.config.metric_store (with the name default as the default).

static state_creator
A reference to the StateCreator ().

static store_user (from_addr, user)
Save a user’s current state to the key-value data store resource.

Arguments
e from_addr (string) — The address (e.g. MSISN) of the user.
* user (object) — The user state to save.
Returns a promise that fires once the user data has been saved.

static switch_state (state_name)
Switch to a new state.

Arguments
 state_name (string) — Name of the state to switch to.
This method returns a promise that fires once the state transition is complete.

If the current state has the same name as state_name, no state transition occurs. Fires
StateExitEvent () and StateEnterEvent () events as appropriate.

static user
User data for the current user. Available once InteractionMachine.load_user () hasbeen called
by InteractionMachine.on_inbound_message ().

static user_addr
Address of current user (e.g. their MSISDN). Available once InteractionMachine.load_user ()
has been called by InteractionMachine.on_inbound_message ().

static user_key (from_addr)
Return the key under which to store user state for the given from_addr.

Arguments
* from_addr (string) — The address (e.g. MSISDN) of the user.

User state may be namespaced by setting config.user_store to a prefix to store the application’s
users under.

class NewUserEvent ()
IMEvent () fired when a message arrives from a user for whom there is no user state (i.e. a new unique user).

Arguments
e im (InteractionMachine) — the interaction machine firing the event.

The event type is new_user.

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

class SessionCloseEvent ()
IMEvent () fired when a user session ends.

Arguments
e im (InteractionMachine) — the interaction machine firing the event.

* boolean (possible_timeout) — true if the session was terminated by the user (including when
the user session times out) and false if the session was closed explicitly by the sandbox
application.

The event type is session_close.

class SessionNewEvent ()
IMEvent () fired when a new user session starts.

Arguments
* im (InteractionMachine) — the interaction machine firing the event.
The event type is session_new.

class SessionResumeEvent ()
IMEvent () fired when a new user message arrives for an existing user session.

Arguments
* im (InteractionMachine) — the interaction machine firing the event.
The event type is session_resume.
State.start_state_creator (state_name, im)
Arguments
 state_name (string) — the name of the start state.
e im (InteractionMachine) — the interaction machine the start state is for.

This default implemenation looks up a creator for the state named state_name and calls that. If no such
creator exists, it calls error_state_creator instead.

class StateCreator ()
Arguments

o start_state (string) — Name of the initial state. New users will enter this state when they
first interact with the sandbox application.

A set of states defining a sandbox application. States may be either statically created via add_state, dynam-
ically loaded via add_creator or completely dynamically defined by overriding switch_state.

static add_ creator (state_name, state_creation_function)
Arguments
* state_name (string) — name of the state

« state_creation_function (function) — A function func (state_name, im) for creat-
ing the state. This function should take the state name and interaction machine as param-
eters and should return a state object either directly or via a promise.

static add_state (state, translate)
Arguments

o state (Srate) — the state to add.

8 Chapter 1. Interaction Machine

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

 translate (boolean) — whether the state should be re-translated each time it is accessed.
The default is true.

static error_state_creator (state_name, im)
Arguments
* state_name (string) — the name of the state for which an error occurred.
e im (InteractionMachine) — the interaction machine in which the error occurred.

This default implementation creates an EndState with name state_name and content “An error oc-
curred. Please try again later”.

The end state created has the next state set to null so that:
It won’t set the next state.

*When switch_state () is next reached, we identify that the user currently has no state, and use
the start state instead.

If the start state still does not exist, another error state will be created.
static on_event (event)
Arguments
* event (/MEvent) — the event being fired.

Called by the interaction machine when an IMEvent () is fired. This method dispatches events to handler
methods named on_ <event_type> if such a handler exist.

Handlers should accept a single parameter, namely the event being fired.
Handler methods may return promises.
static switch_state (state_name, im)
Arguments
 state_name (string) — the name of the state to switch to.
e im (InteractionMachine) — the interaction machine the state is for.

Looks up a creator for the given state_name and calls it. If the state name is undefined, calls
start_state_creator instead.

This function returns a promise.

It may be overridden by StateCreator () subclasses that wish to provide a completely dynamic set of
states.

class StateEnterEvent ()
IMEvent () fired when a user enters a state from a different state.

Arguments
* im (/nteractionMachine) — the interaction machine firing the event.
* state (object) — the state object being entered.
The event type is state_enter.

class StateExitEvent ()
IMEvent () fired when a user exits a state to a different state.

Arguments

* im (InteractionMachine) — the interaction machine firing the event.

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

* state (object) — the state being left.
* user (object) — the user leaving the state.

The event type is state_exit.

10 Chapter 1. Interaction Machine

CHAPTER 2

States

class State (name[, handlers])
Base class for application states.

Arguments
* name (string) — name of the state.

* handlers (object) — Mapping of handler names to handler functions for state events. Pos-
sible handler names are setup_state, on_enter and on_exit. Handler functions
have the form func (state).

class BookletState (name[, opts])
A state for displaying paginated text.

Arguments
* name (string) — name of the state

* opts.next (fn_or_str) — state that the user should visit after this state. Functions should have
the form f (message_content [, done]) and return the name of the next state. If
the done argument is present, £ should arrange for the name of the next state to be return
asynchronously using a call to done (state_name) . The value of this inside £ will be
the calling BookletState () instance.

* opts.pages (integer) — total number of pages.

* opts.page_text (function) — function func (n) returning the text of page n. Pages are
numbered from 0 to (pages - 1). May return a promise.

* opts.initial_page (infeger) — page number to use when the state is entered. Optional, default

is 0.

* opts.buttons (object) — map of user inputs to amounts to increment the page number by. The
special value ‘exit’ triggers moving to the next state. Optional, defaultis: {"1": -1,
"2": +l, "O": "exit"},

* opts.footer_text (string) — text to append to every page. Optional, default is: "\n1l for
prev, 2 for next, 0 to end."

* opts.handlers (object) — object of handlers for particular events, see State ().

class Choice (value, label)
An individual choice that the user can select inside a ChoiceState ().

Arguments

* value (string) — string used when storing, processing and looking up the choice.

11

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

* label (string) — string displayed to the user.

class ChoiceState (name, next, question, choices, error, handlers[, options])
A state which displays a list of numbered choices, then allows the user to respond by selecting one of the choices.

Arguments
* name (string) — name used to identify and refer to the state

* next (fn_or_str) — state that the user should visit after this state. Functions should have the
form £ (choice [, done]) andreturn the name of the next state. If the done argument
is present, £ should arrange for the name of the next state to be return asynchronously
using a call to done (state_name). The value of this inside £ will be the calling
ChoiceState () instance.

* question (string) — text to display to the user
* error (string) — error text to display to the user if we reach this state in error. Optional.
* handlers (object) — object of handlers for particular events, see State ().

 options.accept_labels (boolean) — whether choice labels are accepted as the user’s re-
sponses. For eg, if accept_labels is true, the state will accepts both “1” and “Red”
as responses responses if the state’s first choice is “Red”. Defaults to false.

class LanguageChoice (name, next, question, choices, error, handlers[, options])
A state for selecting a language.

It functions exactly like ChoiceState () except that it also stores the value of the selected choices as the
user’s language (it is still available as an answer too).

Choice () instances passed to this state should have two-letter language codes as values, e.g.:

new LanguageChoice (
"select_language",
"next_state",
"What language would you like to use?",
[new Choice("sw", "Swahili"), new Choice("en", "English")]

)i
See ChoiceState () for a description of the parameters to the constructor.

class PaginatedChoiceState (name, next, question, choices, error, handlers, page_()pts[, options])
A sub-class of ChoiceState () that splits the list of choices given into pages.

Arguments
* page_opts.back (string) — Label to use for the previous page option (defaults to Back).
* page_opts.more (string) — Label to use for the next page options (defaults to More).

* page_opts.options_per_page (integer) — Maximum number of options per page, excluding
the next and previous page options (defaults to 8).

* page_opts.characters_per_page (interger) — If set, labels for choices will be shortened so
that there are no more than this number of characters per page of text sent to the user (de-
faultis null —i.e. don’t shorten any text). Shortened choices are truncated and have . . .
appended to indicate to the user that the option has been shortened. The character count in-
cludes all content rendered when displaying the state (i.e. the question, the choices selected
for the page and any previous or next choices added by PaginatedChoiceState ()).

Other parameters are described in ChoiceState ().

12 Chapter 2. States

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

class EndState (name, text, next, handlers)
A state which displays a list of numbered choices, then allows the user to respond by selecting one of the choices.

Arguments

name (string) — name used to identify and refer to the state
text (string) — text to display to the user

next (fn_or_str) — state that the user should visit after this state. Functions should have the
form f (message_content) and return the name of the next state. The value of this
will be the calling EndState () instance. If next is null, the state machine will be left
in the current state.

handlers (object) — object of handlers for particular events, see State ().

class FreeText (name, next, question, check, error, handlers)
A state which displays a text, then allows the user to respond with any text.

Arguments

name (string) — name used to identify and refer to the state

next (fn_or_str) — state that the user should visit after this state. Functions should have
the form f (message_content [, done]) and return the name of the next state. If
the done argument is present, £ should arrange for the name of the next state to be return
asynchronously using a call to done (state_name) . The value of this inside £ will be
the calling FreeText () instance.

question (string) — text to display to the user

check (function) — a function func (content) for validating a user’s response. Should
return t rue if the response is considered valid, and false if otherwise.

error (string) — error text to display to the user if we reach this state in error. Optional.

handlers (object) — object of handlers for particular events, see State ().

13

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

14 Chapter 2. States

CHAPTER 3

HTTP API

class HttpApi (im, opts)
A helper class for making HTTP requests via the HTTP sandbox resource.

Arguments
* im (InteractionMachine) — The interaction machine to use when making requests.
* opts.headers (object) — Default headers to use in HTTP requests.

* opts.auth (object) — Adds a HTTP Basic authentication to the default headers. Should
contain username and password attributes.

static check_reply (reply, method, url, request_body)
Check an HTTP reply and raise an Ht tpApiError () if the response status code is not in the 200 range
or the reply body cannot be decoded.

Logs an error via the sandbox logging resource in an error is raised.
Arguments
¢ reply (object) — Raw response to the sandbox API command.
* method (string) — The HTTP method used in the request (for use in error messages).
e url (string) — The URL the HTTP request was made to (for use in error messages).
* request_body (string) — The body of the HTTP request (for use in error messages).
Returns the decoded response body or raises an Ht tpApiError ().

static create_headers (headers)
Combines a set of custom headers with the default headers passed to Ht tpApi ().

Arguments

* headers (object) — Additional HTTP headers. Attributes are header names. Values are
header values.

Returns the complete set of HTTP headers.
static decode_response_body (body)
Arguments
* body (string) — The body to decode.

Sub-classes should override this to decode the response body and throw an exception if the body cannot
be parsed. This base implementation returns the body as-is (i.e. decoding is left to the code calling the
HttpApi ()).

15

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

static delete (url, opts)
Make an HTTP DELETE request.

Arguments
¢ url (string) — The URL to make the request to.
* opts (object) — Options to pass to HL t pApi.request ().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static encode_request_data (data)
Arguments
 data (object) — The data to encode.

Sub-classes should override this to encode the request body and throw an exception if the data cannot
be encoded. This base implementation returns the data as-is (i.e. encoding is left to code calling the
HttpApi ()).

static get (url, opts)
Make an HTTP GET request.

Arguments
e url (string) — The URL to make the request to.
* opts (object) — Options to pass to Ht tpApi . request ().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static head (url, opts)
Make an HTTP HEAD request.

Arguments
¢ url (string) — The URL to make the request to.
* opts (object) — Options to pass to HL t pApi.request ().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static post (url, opts)
Make an HTTP POST request.

Arguments
¢ url (string) — The URL to make the request to.
* opts (object) — Options to pass to HL t pApi.request ().

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static put (url, opts)
Make an HTTP PUT request.

Arguments
e url (string) — The URL to make the request to.

* opts (object) — Options to pass to Ht tpApi.request ().

16 Chapter 3. HTTP API

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

Returns a promise which fires with the decoded value of the response body or an object with an error
attribute containing the error message.

static request (method, url, opts)
Arguments
* method (string) — The HTTP method to use (e.g. GET, POST).

e url (string) — The URL to make the request to. If you pass in query parameters using
opts.params, don’t include any in the URL itself.

* opts.params (object) — Key-value pairs to append to the URL as query parameters.

* opts.data (object) — Data to pass as the request body. Will be encoded using
HttpApi.encode_request_data () before being sent.

* opts.headers (object) — Additional headers to add to the default headers.

Returns a promise that fires once the request is completed. The value returned by the promise is the
body of the response decoded using Ht t pApi .decode_response_body () or an object containing
an attribute named error whose value is the error message.

class HttpApiError (msg)
Thrown when an error occurs while making an HTTP request.

Arguments
* msg (string) — a description of the error.

class JsonApi (im, opts)
A helper class for making HTTP requests that send and receive JSON encoded data.

Arguments
* im (/nteractionMachine) — The interaction machine to use when making requests.

 opts.headers (object) — Default headers to use in HTTP requests. The Content-Type
header is overridden to be application/json; charset=utf-8.

* opts.auth (object) — Adds a HTTP Basic authentication to the default headers. Should
contain username and password attributes.

static decode_response_body (body)
Decode an HTTP response body using JSON.parse ().

Arguments
* body (string) — Raw HTTP response body to parse.
Returns the decoded response body.

static encode_request_data (data)
Encode an object as JSON using JSON. stringify ().

Arguments
* data (object) — Object to encode to JSON.
Returns the serialized object as a string.

See also Vumi Go’s documentation.

17

http://vumi-go.readthedocs.org/

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

18 Chapter 3. HTTP API

CHAPTER 4

Example Applications

To get you started, here are some example applications that may be useful as an example or reference.

4.1 JSBox Skeleton

A bare bones application that you can use as a starting point. It’s ready for you to read, adapt, unit-test, deploy and
use on your phone within minutes.

4.2 Contacts Example

You can create, update and remove contact information in Vumi Go’s contact database. Here is an example application
that shows you how.

4.3 Groups Example

Want to access Vumi Go‘s groups? The Go Groups application shows you how to do that. It’s a simple application
that lets you create, list, and search for groups via USSD.

4.4 Key Value Store Example

Want to store some data for your application? Have a look at the Key Value store example application. Useful for if
you need to maintain counters across sessions or have some session information you want to hold on to.

4.5 Booklets!

Sometimes you have little nuggest of information that’s shareable via USSD. Specifically for that we’ve created the
Booklet State. It allows you to page through information over USSD. Here is an example application that uses it.

19

https://github.com/smn/go-jsbox-skeleton
https://github.com/smn/go-contacts
https://go.vumi.org/
https://github.com/smn/go-groups
https://github.com/smn/go-kv-store
https://github.com/smn/go-booklet-state/

Vumi Javascript Sandbox Toolkit Documentation, Release 0.1.23

4.6 SMS keywords

An often used pattern with SMS shortcodes is to assign different behaviour to different keywords. The sms keyword
application shows you how that can be done.

4.7 Events & Metrics

Want to track growth or changes in your application over time? The events firing example application shows you how
that can be done. In the background this publishes events to Graphite.

4.8 Google Maps Mashup

An example mashup combining USSD, Google Map’s APIs and SMS. See how all these fit together to create a super
useful application that does geolocation and delivery of directions via USSD & SMS.

Note: This application is available in South Africaon *x120x8864x1105#.

4.9 Ushahidi

We’re big fans of Ushahidi, the crisis mapping tool. This Ushahidi USSD app is another mashup of USSD and the
Ushahidi API. Allows reporting of geolocated events via USSD to hosted Ushahidi instances.

Note: This application is available in South Africaon x120+x8864x10874.

20 Chapter 4. Example Applications

https://github.com/smn/go-js-sms-keyword-handling
https://github.com/smn/go-events-firing
http://graphite.wikidot.com/
https://github.com/smn/go-google-maps
http://ushahidi.com/
https://github.com/smn/go-ushahidi

CHAPTER 5

Indices and tables

* genindex
* modindex

e search

21

	Interaction Machine
	States
	HTTP API
	Example Applications
	JSBox Skeleton
	Contacts Example
	Groups Example
	Key Value Store Example
	Booklets!
	SMS keywords
	Events & Metrics
	Google Maps Mashup
	Ushahidi

	Indices and tables

